Implementing Prolog Extensions : A Parallel Inference Machine*

Jean-Marc Alliot! Andreas Herzig? Mamede Lima-Marques®
(alliot@irit.fr) (herzig@irit.fr) (mamede@irit.fr)

Institut de Recherche en Informatique de Toulouse
118 Route de Narbonne
31062 Toulouse cedex, France

Abstract

We present in this paper a general inference machine for building a large class of meta-
interpreters. In particular, this machine is suitable for implementing extensions of Prolog
with non-classical logics. We give the description of the abstract machine model and an
implementation of this machine in a fast language (ADA), along with a discussion on why
and how parallelism can easily increase speed, with numerical results of sequential and
parallel implementation.

1 Introduction

In order to get closer to human reasoning, computer systems, and especially logic program-
ming systems, have to deal with various concepts such as time, belief, knowledge, contexts,
etc. .. Prolog is just what is needed to handle the Horn clause fragment of first order logic, but
what about non-classical logics? Just suppose we want to represent in Prolog time, knowledge,
hypotheses, or two of them at the same time; or to organize our program in modules, to have
equational theories, to treat fuzzy predicates or clauses. All these cases need different ways of
computing a new goal from an existing one.

Theoretical solutions have been found for each of the enumerated cases, and particular
extensions of Prolog have been proposed in this sense in the literature. Examples are [BK82],
[GL82], Tokio [FKTMO86], N-PROLOG [GR84], Context Extension [MP88], Templog [Bau89],
Temporal Prolog [Sak89], and [Sak87].

For all these solutions it is possible to write specific meta-interpreters in Prolog that imple-
ment these non-classical systems ([SS86]). But there are disadvantages of a meta-interpreter:
lower speed and compilation notoriously inefficient. If we want to go a step further, and to
write proper extensions of Prolog, then the problem is that costs for that are relatively high
(because for each case we will lead to write a new extension), and we are bound to specific
domains: we can only do temporal reasoning, but not reasoning about knowledge (and what
if we want to add modules?).

*Proceedings of the International Conference on Fifth Generation Computer Systems 92
tSupported by the Centre d’Etudes de la Navigation Aérienne, France

tSupported by the Medlar Esprit Project

§Supported by CAPES — Brasil

Our aim is to define a framework wherein a superuser can create easily “his” extension of
Prolog. This framework should be as general as possible. Hence, we must provide a general
methodology to implement non-classical logics.

There are four basic assumptions on which our frame is built:

1. to keep as a base the fundamental logic programming mechanisms that are backward
chaining, depth first strategy, backtracking, and unification,

2. to parametrize the inference step: it is the superuser who specifies how to compute the
new goal from a given one, and he specifies it in a logic form.

3. to be able to rewrite goals.

4. to select clauses “by hand”.

Points (2) and (3) postulate a more flexible way of computing goals than that of Prolog,
where first a clause is selected from the program, then the Robinson unification algorithm
is applied to the clause and the head of the goal, and finally a new goal is produced. It is
important to note that this enables a new form of parallelism, which we call rule parallelism:
for a given goal, several inferences rules may be applicable. In this case, it is possible to use a
different processor for each rule.

Point (4) introduces a further flexibility: the superuser may select clauses that do not unify
exactly with the current goal, but just “resemble” it in some sense. Even more, if the current
goal contains enough information to produce the next goal, or if we just want to simplify a goal
or to reorder literals we don’t need to select a fact clause at all.

The assumptions (1) and (2) were at base of the development of a meta-level inference
system called MOLOG [FFdC86], [ABFdC*86], [BFdCHSS], [Esp87b], [Ksp87a]. The inference
machine that is presented in this paper is a complete rewriting of MOLOG realizing assumption
(4). It has been developped at IRIT ([Bri87] and [AGS8S8]). A formal specification of the
inference mechanism called TIM : Toulouse Inference Machine, together with various examples,
has been published in [BHLM91]. Here, in this paper, we present BRSKi : Toulouse Abstract
Reasoning System for Knowledge Inference, which is an abstract machine in which the inference
mechanism can be implemented: MRSKT is designed for parallelism. In [BHLM91], nothing has
been said about the abstract machine, parallelism, and implementation issues. Moreover, the
specifications are defined more clearly now.

In the next sections, we define non-classical Horn clauses. In section 3, we define the
inference rules by which the super-user can specify his meta-interpreter. As an example we
show how modules can be specified easily in terms of inference rules in section 4. In section 5,
the abstract machine TARSKI is introduced. Then we describe parallel inference rule selection
and execution, and finally we discuss the choices for the distributed implementation.

2 Horn Clauses

The base of the language is that of Prolog. That language can (but need not) be enriched with
context operators if one wants to mechanize non-classical logics.

Characteristically, non-classical logics possess symbols with a particular behaviour. These
symbols are

e either classical connectors with modified semantics (e.g. intuitionist, minimal, relevant,
paraconsistent logics)

e or new connectors called context operators (necessary and possible in modal, knows in
epistemic, always in temporal, if in conditional logics).

Example In epistemic logics, the context operators are knows and comp, and

knows(a):P means that agent ¢ knows that P
comp(a):P means that it is compatible with a’s knowledge that P

Hence inference engines for non-classical logics must reckon for the particular behaviour
of some given symbols. These properties will be handled by built-in features of the inference
engine.

The conditio sine qua non for logic programming languages is that they possess an implic-
ational symbol to which a procedural sense can be given. To define a programming language
it’s less important if this is material implication or not, but it’s rather the dynamic aspect
of implication that makes the execution of a logic program possible. That is why the TIM
language is built around some arrow-like symbol.

We suppose the usual definition of terms and atomic formulas of logic programming. In-
tuitively, TIM Horn Clauses are formulas built with the above connectors, such that dropping
the context we may get a classical Horn clauses. Now for each logic programming language
we suppose a particular set of context operators. This set depends on the logic programming
language we want to implement, e.g. in epistemic logic it is {knows, comp} and in temporal
logic it is {always, sometimes}. Formally we define by mutual recursion:

Definition 2. 1 - contexts

m(tq,...,ts) is a context if m is a context operator n > 0, and for 1 < i < n every t; is
either a term or a definite clause.

Definition 2. 2 - goal clauses
7P is a goal clause if P is an atomic formula
2(G A F) is a goal clause if ?G/, 717 are goal clauses

TMOD : Fis a goal clauses if 7} is a goal clause and MOD is a context

Definition 2. 3 - definite clauses

P is a definite clause if P is an atomic formula

MOD : F is a definite clause if F' is a definite clause and MOD is a context
F « (G is a definite clause if I is a definite clause and G is a goal clause

Definition 2. 4 - TIM Horn clause

A TIM Horn clause (or Horn clause for short) is either a goal clause or a definite clause.
Note that Horn clauses may contain several implication symbols.

> Clause selection ﬂ)» Failure
clause
No
— Rule selection ru'le Backtrack
Rule execution — [p
Failure acktrack

— Terminating rule?

No
l Yes
Rewriting
Final form ?
No

l Yes

SUCCESS

Figure 1: General mechanism of the TIM machine

We shall also use the term Modal Horn clauses if we are speaking of a modal logic. A set
of definite clauses is called a database.
In the following sections we shall use the definition of the head of a Horn clause.

Definition 2. 5 - Head of a Horn clause

e H is a head of H.

e His a head of F AG if H is a head of F.

e Hisa head of FF ¢+ G if H is a head of F.

e H is a head of MOD : F if H is a head of F.

3 Writing Meta-Interpreters

3.1 General Mechanism

Just as in Prolog, to decide whether a given goal follows from the database essentially means to
compute step by step new subgoals from given ones. In our case, the computation of the new
subgoal is specified by the superuser. The general inference mechanism is described in figure
1. There are five steps:

Clause selection: We select a clause to solve the first sub-goal of the question.

Rule selection: We select a rule to be applied to the current clause and the current question.

Rule execution: The execution of the rule “modifies” the current clause and the current
question and builds a resolvent.

Rewritting of the resolvent: When we reach a termination rule, we rewrite the resolvent
into a new question.

End of resolution : A resolution is completed when we reach a final form : the goal clause
true.

This system is doubly non determinist, because we have both a clause selection (as in standard
Prolog) and a rule selection.

We are going in the next sections to explain how this mechanism can be implemented. In
subsection 3.2, we will discuss rule selection and execution, in subsection 3.4 rewriting and in
subsection 3.3 clause selection. In section 6, we will come back to rule selection to show how
efficient mechanism can be used to improve resolution speed.

3.2 Selecting and Executing Inference Rules

An inference rule is of the form : A,?B F7C" where A is a definite clause and B, C are goal
clauses. It can be read: If the current goal clause unifies with B and the selected database
clause unifies with A then a new goal can be inferred that is unified with C. In the style of
Gentzen’s sequent calculus, inference rules can be defined recursively as follows:

ATBEIC
AL TBECY
where A, A" are definite clauses and B, C', B’, C' are goal clauses. As usual in metaprogram-
ming, objects of the object language are represented by variables of the metalanguage!.
The efficiency of the execution of the inference rules with 1ARSKr is warranted by the following
conditions on the form of the inference rules:

e var(A') Cwvar(A)
e A’is a head of A or A is a head of A’
e (' is a variable

e ('is a head of C

A special category of inference rules are reflexive rules:
true, ?B F?C
AlTB RO

These rules use the special fact true. The conditions that these rules must meet are:

o A’ is either:

To be correct, the real form of inference rule is more general: A procedural condition expressed with
elementary functions of the abstract machine (see section 5) can be added. HEssentially, what can be tested here
is any condition on the form of A,A’, B, C, B', C’, or on the existence of a database clause of a certain form.
E.g. we can let an inference rule depend on the (non-)existence of some clause in some particular module of
the database.This enables a more precise control over execution.

— a variable?, or

— any definite clause constructed from the variables in B and C' and constants.
e (' is a variable
e ('is a head of C

Partial termination rules are written:
A TBREIC
They end the recursivity in resolution.
These are some examples : the Prolog rule for goal conjunctions:

AITBANCEIDAC
A, TBFTD
the Prolog rule for implications in database clauses:

A+ B,2CHFBAD
A 70D

the Prolog partial termination rule is:
p, Ip Fltrue
Note that here we make use of unification. These three rules are exactly what is needed to
implement Prolog.

To summarize, the execution of an inference rule modifies the current fact and the current
question and constructs a resolvent. The resolvent has the same structure as the question or
any other fact. Partial resolution is achieved when we reach a partial termination rule.

How rules are selected is defined by the user. We will see in the section 6 how this is exactly
done. For the moment, we say that rules are taken in the order they appear in the rule base.

3.3 Rewriting the Resolvent into a New Question

As soon as we have reached a partial termination rule, we rewrite the resolvent to create the
new question to solve. Rewriting is useful not only in order to simplify goals, but also in order
to eliminate the true predicate from the new goal clause.

Rewrite rules are of the form:

G1 ~ (G2

and allow to replace a term that is matched by G1 in the resolvent with some substitution ¢
by the term (G2)o in the new question.
For example, the Prolog rewrite rule is:

true N A~ A
In epistemic logic, the rule :
knows(a) : knows(a) : A~ knows(a) : A
is a useful simplification.

3.4 Selecting Database Clauses

The user can define the way clauses are selected in the base. But this selection “by hand” must
be chosen among a given set (that currently implements only two methods: classical Prolog
selection and least used clause selection).

2This variable will be unified with a new fact taken in the clause base

Module logic
M:C,7M:GFTM:NG
C,7GFING
C?M:GFTM:NG
C?GF?’NG

trueNG~strue

M :true~strue

Table 1: Rules for Module logics

Using the abstract machine, it is possible to build another selection mechanism (for example
indexing selection on the first operator) but it has not been implemented yet and it is not
described in this paper.

4 Examples : Modules

In this section we are going to show how to specify modules with dynamic import. Here, any
module name, such as m, m1, m(2), etc. . .is considered to be a context.

The goal m1 : m2 : G succeeds if G can be proved using clauses from the modules m1 and
m?2. The inference rules are that for Prolog, plus two supplementary rules to handle module
operators (table 1).

The first rule represents the case where a module M is used to compute a new goal, and
the second where another module name eventually occurring in G is used.

Others types of modules such as modules with static import or with context extension
[MP88], can be specified by just adding a new inference rule. In [BHLM91], we have shown
how temporal logics, hypothetical reasoning and logics of knowledge and belief can be specified
elegantly in our framework.

5 The Abstract Machine

The goal of the "TARSKI abstract machine is to bridge the gap between the description of inference
rules in logical form as shown above, and the real implementation of the rule in an efficient
programming language.

Compared to the WAM, the TARSKI abstract machine deals with different objects, and has a
quite different goal, but on the whole, principles are identical; we will also define our machine
in terms of data, stacks, registers and instructions set. We do not have enough room here to
describe completely the machine. So, we shall not speak of the “classical” parts of resolution
that are identical: i.e unification or backtracking. Let’s say that the machine relies on classical
structure sharing for unification, and on depth first search and backtracking.

Before going further, we must tell about the Great Lie. TARSKI does not use classical
logic operators A or <. For simplicity sake, all operators either classical or non-classical are
represented in our formalism in the same way and are treated by the machine in the same way
too. Let’s see that on an example: The logical clause written in Prolog:

A~ BAC

will be written in TARSKI:
ANC):AN(B): A

Here B is the argument of A and A is qualified by A(B). All operators have arguments, and
qualify an object. For example, the S4 modal logic? clause:

O(X) : (O(a) : p < <(a) : p)
will be written:

O(X) : A(C(a) :p): O(a) : p
and O(a) : p is the argument of A that qualifies O(a) : p.

This could look like the polish reverse notation, but it is not exactly the same. In the polish
reverse notation Kpq (that is p A q) gives the same role to p and ¢. In A(p) : ¢, p and ¢ have
really different parts to play: p is an operand of A and ¢ is the object qualified by A(p). This
destroys the symmetry of A, but should be considered as an advantage here. In all classical
Prolog, solving p A ¢ is different from solving ¢ A p: the operator is not symmetric at all.

This formalism was not adopted lightly. The first versions did not use it, and gave a special
place to the classical operators: we had a lot of problems to describe correctly the inference
mechanism. Adopting this structure greatly enhanced the simplicity and the efficiency of the
system.

5.1 Data Structures

First of all, boolean objects (true, false) with their associated classical operators (not, or, and)
are implemented along with integer and floats, with their standard operations.

All data are organized in stacks. There are currently nine basic data types, and nine
corresponding stacks.

The objects stack: holds all the objects on which the machine operates. An object can be
either: an operator?, a predicate®, a variable, an integer, a float, a cons®, alfree”. Elements
of this stack will be called ObjectElement®.

The operands stack: Objects do not hold their operands. Each object that has arguments
holds the number of its operands and a pointer to an element of this stack that holds
pointers to all the operands®. Elements of this stack are called OperandElement.

The clauses stack: Each element of this stack is composed of:

e a pointer in the object stack to the beginning of the clause
e a pointer to the head predicate!©

e the number of free variables in the clause.

Elements of this stack are called ClauseFElement.

®From now on, we will only use the S4 modal logic. A classical introduction is [HC72]. We will use the
following notations : O is knows, ¢ is compatible. Modal operators have arguments that must be constants.
The new operator &7 must be added to the original language as shown in ([CHS8S]).

* An operator is an object that has objects as arguments and qualifies an other object.

A predicate is an object that has arguments but does not. qualify any other object.

8The classical LISP cons

" alfree is a special object quite similar in its behaviour to a variable that would always be free (alfree is the
abbreviation of always free).

8Strings are currently not implemented.

9The operand stack is probably a technical mistake and will probably be suppressed in future versions of
the machine

1% Useful when using classical Prolog clauses selection to increase speed.

The environments stack: Each element is a pair composed of a pointer to an object and a
pointer in the environment stack in that the object has to be evaluated (classical structure
sharing implementation). Elements of this stack are called EnvironmentElement.

The Trail stack: Pointers to the environment list for resetting to free some variables when
backtracking (classical structure sharing implementation). Elements of this stack are
called TrailFlement.

The backtrack stack: Each element holds all information necessary to backtracking (values
of top of stacks). Elements of this stack are called BacktrackFlement.

The question stack: Each element is a pair composed of a pointer of an object and a pointer
to the environment where this object must be evaluated. The question stack holds goals
to be solved. Elements of this stack are called QuestionFlement.

The resolvent stack: stack for the resolvent elements. The resolvent is built with the current
question and the current selected fact. When reaching a partial termination rule, the
resolvent is re-written using rewriting rules on the top of the question and becomes the
new question. Elements of this stacks are called resolventElement.

The predicates stack: Holds predicate structures.

There are also nine other types : pointers'! to object in each stack, respectively ObjectPointer,
OperandPointer, ClausePointer, EnvironmentPointer, TrailPointer, BacktrackPointer, resolvent-
Pointer, QuestionPointer.

At last, there is the rules array. This array describe how resolution rules behave in the
system. We will come back to this later.

5.2 Registers

The registers described here are what we call global registers or main registers (see figure 2).
There exist also general purpose registers that can be temporarily used for computations. We
will note them RO, R1, ...in the following pages.

At time t, the machine is completely defined by the values of its stacks and its registers.

5.3 Instructions Set

We describe here the instruction set of the abstract machine. We can not, because of lack
of space, describe it extensively, but the next few lines give an intensive definitions of all
instructions.

For each type of object, there are twice as many functions as there are components in the
object, one for getting the value of the component and one for setting this value.

Moreover, for each of the nine stacks there are 6 basic operations implemented (see figure

3).
+(p:pointer; i:integer):pointer Increments pointer p by i

-(p:pointer; i:integer):pointer Decrements pointer p by i

""We usually use the term pointer that is not exactly appropriate. Our pointers should be thought as abstract
data types, that can be implemented as real pointers, or as indexes of an array, or anything similar.

Register | Description

Qcurr Pointer to the current object in the question
FCurr Pointer to the current object in the clause
FEnv Pointer to the environment of the current clause

CClause | Pointer to the current clause

CRule Index of the current rule used

TrTop Pointer to the top of Trail Stack
ObTop Pointer to the top of Object Stack

BT Top Pointer to the top of Backtrack stack
Qtop Pointer to the top of question stack
RTop Pointer to the top of resolvent stack
EnvTop | Pointer to the top of environment stack

Figure 2: Abstract machine registers

Operation Description

Push(x : object) return pointer | Push on the stack object x and return a pointer to it
Read(i : pointer) return object | returns a copy of the value of the object stored at address i

Pull return object Pull out top of the stack and returns a copy of it.

Modify(x : object; i : pointer) Change the value of object pointed by 1 to value of object =
Set'Top(i : pointer) Resets top of stack to address 12

Position return pointer Returns a pointer to top of stack

Figure 3: Operations available on each stack

-(p1,p2 : pointer):integer Returns the number of elements between pl and p2.

There are also some classical functions: Assignment, Equality test, Conditional con-
structions.
This ends the description of atomic functions. We will need in the following lines the
classical macro-instruction unify, that unifies (Structl, Envl) with (Struct2, Env2)!2
Let’s see on an example how the abstract machine code is used to implement rules'? :
O(X):A0(X): BFIO(X) : C
O(X): A?BFIC

is translated into:

RO:=Read(Qcurr)

if not

unify(Fcurr,Fenv,GetNumStruct (R0O),GetNumEnv(RO))
then return false
else Pushresolvent(R0O) endif

Qcurr := Qcurr+1l

return true

"2unify is of course written with atomic instructions.
3 Other examples can be found in [Alled]: full implementation of S4 logic, among others (Fuzzy logic, module
logic).

10

6 Rule Selection with Parallelism

In section 3.4, we said that resolution rules were chosen in the rule base in order of appearance.
We are going to show here that this mechanism can be greatly enhanced by indexing the rules
base and using parallel execution of rules.

6.1 Indexation of Rules

The rules necessary to implement S4 are shown on top of table 2.

Remember that due to the uniform notation of the abstract machine the clause A(A) : B of
the second rule is in fact the implication B < A. We can see that, for a given fact and a given
question, we have to try a lot of different rules. This creates a second non-determinism that
greatly slows down the implementation of the language.

But trying all rules is usually not useful, because for a given fact and a given question,
only a few rules will match the shape of the fact and the shape of the question. For example,
if the fact is O(X) : A and the question &7(X,) : B only rules 9 and 11 can be used.

So, for a given logic, we can develop extensively all possible cases. For S4, this gives table 2.
This way, given a fact and a question, the array gives directly the rules that can be applied and
there is often only one rule that can be applied. This transforms the double non-determinism
in an almost simple non-determinism much closer to Prolog complexity. So, in a large number
of cases, it is not necessary to backtrack on rule selection.

6.2 Parallel Rule Execution

The abstract machine was designed to enable an easy implementation of parallelism. Some-
times, for a given definite fact and a given goal clause, more than one rule is possible : we can
use a different processor for each rule. For example, in the S4 logic, if the fact is O(X) : A and
the question is (X)) : B, four rules can be used (table 3). With four processors, each one can
continue the resolution with a different rule. Figure 4 shows how the inference system, running
originally on processor P1, parallelizes resolution on four processors P1, P2, P3, P4. So, it is
possible to solve, in parallel, S4 rules described in table 3.

The information transferred from one processor (P1) to its children (P2, P3, P4) are the
abstract machine data stacks and the abstract machine registers. Some stacks are never trans-
ferred (the backtrack stack, the trail stack) because the child does not need to backtrack over
the current resolution point. This parallelism induces no side effects : as soon as one processor
has received data, it will not have to communicate with its parent any more until it has finished
its own resolution. Moreover, there is no overhead in processing time because parallelism is
explicit in the language itself : overhead comes only from communication between processes.

Four models (Master/slaves network, fully interconnected networks, ring networks, top-
down networks) are under development; we just mention them and we will not discuss them in
detail.

Fully interconnected network: Every processor can distribute work to any other processor
that is free. A very simple protocol is used to prevent two processors to send at the
same time data to the same processor (figure 5). This protocol will solve problems as
represented in figure 4.

MOn all practical implementations issues, details can be found in [Alled].

11

Type | Number Form
Rule

Rule
Rule
Rule
Rule
Rule
Rule
Rule
Rule

p, Tp Eltrue
(A) B,7CF?A(A):D

B,7CF7D
B,7A(A):CFIA(A):D

B,7CF?D

A 7<>(X) BRC

A,75(X):BFTC

1):A70 1 (X 1):BF?O (X, 1):C
A,7BF70

O(X):4,70(X):BF?0(X):C
O(X):A,7BF7C
(X):A,73(X):BFIO(X):C
O(X):4,7BF7C
O(X):A4,70 (X, 1):BR?O (X, 1):C

(X):

(X)

JBF?C
(JD):A,20(X):BE2O (X, 1):C
X

Or

[m]

X

D((X)A ”BI—’(’(‘)
0(X):4,70 BE?7O(X):C
Rule | 10 1.70(X):BF7C
o(x :A,?BI—?C
Fact | Question || Usable rules
Pred | Pred p, Tp Eltrue
A TAX):BETA(X):C
Pred | A ’ A(A,)?Bl—?é‘()
- A, 7O(X):BFIC
Pred | © —AIBRTC
A(X):ATBFIA(X)C
ATBE?C
ANX VA IAY):BETA(Y):C
A(X):A,7BF7C
X):A,70(Y):BFTA(X):C
A,70(Y):BFIC
X):A,75 [V, I):BFTA(X):C
):

— © 00 ~I O Ul A~ W N =

& A

A,75,(Y,1):BFTC

O(X):A,?7BE?C

Pred —A7BrIC
Y
X

G(Y):A,7A(X):BFIA(X):C
O(Y):A,7BF?C
> G(X):A,70(Y):BFTC
A,70(YV):BF?C
8(Y):A,70(X):BFIC
O(Y):A,?BF?C
O(X):4,70(X):BFTO(X):0
A70(X):BFIC
O(X):A,70(X):BF7O(X):C
O(X):A,?BF?C
O(X):A,70(Y,1):BFTC
= Or 4,70 (Y, 1):BF?C
O(X):A,70 (X):BF7O (X, 1):C
O(X):A4,7BF?C
SV):ATA(X):BFTA(X):C
S1(Y):A,7BF?C
S1(YV):A,7O0(X):BFIC
1 < &1 (V):AZBF?C
SHX,I):A, 70X):BF7O (X 1):C
A70(X):BF?C
S AT (X):BFIS (X110
<>I <>I I() AI(”Bl—)?C I()

I

(
(
(
(
(
(
(

olag|o|>|>>|>
<&
~
>

Table 2: S4 logic rules and their exhaustive development

12

‘ Fact ‘ Question H Rules
O(X):4,70 =10]
R1 | O o (A)"’O()(B)I—"’C
O(X):A,70(X):BF?C
R2 O(X):A,7BF?C
"3 a(X):4,70(X): BFIO(X):C
A,70(X):BFTC
oy B(X):4,70(X): BFTO(X):C
O(X):A.7BF?C
Table 3: Rules O against &
P1 Clause selection & Failure
clause
No
P1 Rule selection rule Backtrack
Rule R1 Rule R2 Rule R3 Rule R4
Execution Execution Execution Execution
P1 P2 P3 P4

Each processor will continue resolution with a fourth of

the resolution tree

Figure 4: Parallel execution of S4 rules

Q<_>

L to all : free

P to L : request
LtoP: Ok

P to L : Data

Figure 5: Fully interconnected network

13

Master/slaves network: The master process distributes work to all other processes, which,
in turn, can not distribute any work. This protocol will also solve problems as represented
in figure 4.

Ring network: Here each processor can send work to the next one, and the last processor
can send work to the first.

Top-Down network : In the Top-Down Network, each processor can only send information
to the following one but the last processor can’t send information to the first one. In ring
networks and top-down networks, resolution is not exactly as represented in figure 4.

7 Implementing Parallelism

7.1 The “Classical” Machine

The new abstract machine specifications was the result that began with the first implementation
of MOLOG, in C, in 1988.

Coding the new machine took less than two months. Of course, two years spent in coding
other abstract machines (that proved to be unsatisfactory) helped a lot. From the beginning,
the stress was on getting a program as close as possible to the specifications of the abstract
machine. That was the reason why the ADA language has been chosen: the specifications of
the abstract machine are exactly the specifications of the main package of the implementation.
Moreover, compared to other implementations previously written in C, coding and debugging
was a lot easier and faster. We wanted also to be able to easily implement parallelism. So,
for example, stacks are implemented with arrays and there is not a single real pointer in the
system, only indexes. It has an interesting well known side effect: we never run out of stack
space, because if a stack becomes full, we just have to copy it to a new larger stack. All indexes
are still valid. The mechanism is invisible to the programmer and the user and very useful with
some very recursive non-classical problems.

This was done at the loss of performance. Accessing any object in a stack requires two
function calls and three tests plus the classical indirection. The TARSKI machine runs about
fifteen times slower than C-Prolog'® on PROLOG problems. This could easily be enhanced by
recoding the machine with efficiency in mind.

Coding a logic is very easy as soon as it follows the general framework given in section 3.2.
The S4 logic was implemented in one day. and tested with the classical “wise men” puzzle. The
puzzle is solved in three minutes on a HP-720 workstation with the full amount of knowledge
(more than twenty clauses). With only the five clauses necessary to solve the problem, the
solution is found in less than a second, hundred times faster than the MOLOG interpreter.

7.2 The Parallel Machine

The parallel machine was developped with an ETHERNET network as medium for data trans-
fer. The parallel system is made of many TARSKI machines running on different workstations,
linked by INTERNET sockets'®. The only configuration tested was a top-down network. Res-
ults are shown in table 4. It would be too long to discuss them here in detail. Full explanations

'*1t is however faster than some classical PROLOG written in compiled Common Lisp
YTt was quite easy to do, because all necessary packages for communication and parallelism had been
developped previously for other projects. Reusability of software is a major advantage of ADA.

14

of Procs H P1 P2 P3 P4
319+1

166+10 | 145+6

129424 | 142450 | 77+17
129+26 | 140446 | 46431 | 22+9

=W N =

Table 4: CPU+system time used

can be found in [Alled].

We can briefly say that, over three processors, the network is clearly too slow and becomes
the bottleneck of the system. A large part of time is lost in communicating with other processors.
There are different solutions that could be used to enhance performances:

e We can use parallelism only for branches that are close to the root of the tree. This will
decrease the number of sent packets.

e We can try a master/slave network. The master processor will be almost devoted to
sending packets but slaves would not spare time on this.

e We can improve the amount of sent data; some stacks can only grow, and are never
modified under a certain depth. We could only send new data, and not the whole stack.

e We could try to use a different medium. An ethernet network is a very slow device
for parallelism, and, moreover, our network is usually crowded with packets coming
from other stations or other X-terminals. It would be very interesting to implement the
machine on a multi-processor computer with shared memory segments, or on a transputers
network. We were not able to do it yet because we lack access to such a machine. We
are very eager to try such an approach. If we are able to find a machine with many
processors, the inference machine could be almost as fast as a standard PROLOG even
when solving non-classical logic problems, because the double non-determinism would be
almost reduced to classical PROLOG non-determinism.

8 Conclusion

We think the implementation of any logic given by inference rules of the form defined in the
earlier sections can be done in a very short amount of time (one or two days at most). The
development of an automatic translator from the logical shape of the rules to the abstract
machine specifications suggests itself and is a subject of current work.

Now, it is hoped that fast, general and efficient implementations of such logics could bring
a new area of development for expert systems. In particular, in the C.E.N.A.'7 a large expert
system (3,000 rules) using fuzzy and temporal logics has been developped in Prolog ([AL91]).
This expert system could be an excellent test for TARSKI.

"The CENA is an institution responsible for studies of new systems for Air Traffic Control in France

15

9 Acknowledgements

We wish to thank Luis Farifias Del Cerro for valuable discussions.

References

[ABFACt86] R. Arthaud, P. Bieber, L. Farifias del Cerro, J. Henry, and A. Herzig. Automated modal reas-

[AGSS]

[AL91]

[Alled]
[Bau&9]

[BFACHSS]

[BHLMO1]

[BKS2]

[Bri&7]
[CHS8]]
[Fsp&7a]
[Esp87b]

[FACS6]

[FKTMOS6]

[GL82]
[GRs4]
[HC72]
[MPSS]
[Saks7]
[Saks9]

[$586]

oning. In Proc. of the Int. Conf. on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, Paris, july 1986.

J. M. Alliot and J. Garmendia. Une Implantationen “C” de MOLOG. Rapport D.E.A, Université
Paul Sabatier, Toulouse, France, 1988.

Jean-Marc Alliot and Marcel Leroux. En Route Air Traffic Organizer: un systéme expert pour
le contréle du trafic aérien. In Proceedings of the International Conference on Erpert systems
and their applications, Avignon, May 1991.

Jean-Marc Alliot. TARSKI: une machine paralléle pour implantation d’extensions de PROLOG.
These de doctorat, Université Paul Sabatier, To be published.

Marianne Baudinet. Logic Programming Semantics: Techniques and Applications. PhD thesis,
Stanford University, feb 1989.

P. Bieber, L. Farinas del Cerro, and A. Herzig. MOLOG - a modal PROLOG. In E. Lusk and
R. Overbeek, editors, Proc. of the 9th Int. Conf. on Automated Deduction, LNCS 310, pages
487-499, Argonne — USA, may 1988. Springer Verlag.

P. Balbiani, A. Herzig, and M. Lima-Marques. TIM: The Toulouse Inference Machine for non—
classical logic programming. In M.M. Richter and H. Boley, editors, Processing Declarative
Knowledge, number 567 in Lecture Notes in Artificial Intelligence, pages 365-382. Springe—
Verlag, 1991.

K. A. Bowen and R. A. Kowalski. Amalgamating language and metalanguage in logic program-
ming. In K. Clark and S. Tarnlund, editors, Logic Programming, pages 153-172. Academic Press,
1982.

M. Bricard. Une machine abstraite pour compiler MOLOG. Rapport D.E.A., Université Paul
Sabatier — LSI, 1987.

Luis Farinas Del Cerro and Andreas Herzig. Linear modal deductions. In E. Lusk and R. Over-
beek, editors, Proc. of the 9th Int. Conf. on Automated Deduction Computer Systems. Springer-
Verlag, 1988.

Esprit Project p973 "ALPES”. MOLOG Technical Report, may 1987. Esprit Technical Report.
Esprit Project p973 ”ALPES”. MOLOG User Manual, may 1987. Esprit Technical Report.

L. Farinas del Cerro. MOLOG: A system that extends PROLOG with modal logic. New Gener-
ation Computing, 4:35-50, 1986.

M. Fujita, S. Kono, H. Tanaka, and T. Moto-Oka. Tokio: Logic programming language based on
temporal logic and its compilation to prolog. In Third Int. Conf. on Logic Programming, pages
695-709, jul 1986.

M. Gallaire and C. Lasserre. Meta-level control for logic programs. In K. Clark and S. Tarnlund,
editors, Logic Programming, pages 173-188. Academic Press, 1982.

D. Gabbay and U. Reyle. N-prolog: An extension of prolog with hypothetical implications.
Jounal of Logic Programming, 1:319-355, 1984.

G. E. Hughes and M. I. Cresswell. An Introduction to Modal Logics. Methuen & Co. Litd, USA,
2 edition, 1972.

Luis Monteiro and Antonio Porto. Modules for logic programming based on context extension.
In Int. Conf. on Logic Programming, 1988.

Y Sakakibara. Programming in modal logic: An extension of PROLOG based on modal logic.
In Int. Conf. on Logic Programming, 1987.

Takashi Sakuragawa. Temporal PROLOG. In RIMS Conf. on software science and engineering,
1989.

L Sterling and E. Shapiro. The Art of Prolog. The MI'T' Press, USA, 1986.

16

