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(The Final) Countdown

Jean-Marc Alliot∗

Abstract
The Countdown game is one of the oldest TV show run-
ning in the world. It started broadcasting in 1972 on the
french television and in 1982 on British channel 4, and
it has been running since in both countries. The game,
while extremely popular, never received any serious sci-
entific attention, probably because it seems too simple
at first sight. We present in this article an in-depth anal-
ysis of the numbers round of the countdown game. This
includes a complexity analysis of the game, an analysis
of existing algorithms, the presentation of a new algo-
rithm that increases resolution speed by a factor of 20.
It also includes some leads on how to turn the game into
a more difficult one, both for a human player and for a
computer, and even to transform it into a probably un-
decidable problem.

1 Introduction
The Countdown (Wikipedia [2015]) game is one of the
oldest TV show running in the world. It started broad-
casting in 1972 on the french television as “des chiffres
et des lettres”, literally “numbers and letters” with a
numbers round called “Le compte est bon”, literally
“the count is good”). It started broadcasting in 1982
on British channel 4 as “Countdown”, and it has been
running since in both countries.

The numbers round of the game is extremely simple:
6 numbers are drawn from a set of 24 which contains
all numbers from 1 to 10 (small numbers) twice plus
25, 50, 75 and 100 (large numbers). Then, with these
six numbers, the contestants have to find a number ran-
domly drawn between 101 and 9991, or, if it is impos-
sible, the closest number to the number drawn. Only
the four standard operations (+ − × /) can be used.
As soon as two numbers have been used to make a new
one, they can’t be used again, but the new number found
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1Whether 100 is a possible number to search is a matter of con-

troversy. It seems like it could be in the UK, but not in France, so we
decided to let it out.

can be used. For example, if the six numbers drawn are
1,1,4,5,6,7 and the number to find is 899 the answer is:

Operations Remaining
6 x 5 = 30 {1,1,4,7,30}

30 + 1 = 31 {1,4,7,31}
4 x 7 = 28 {1,28,31}

28 + 1 = 29 {29,31}
29 * 31 = 899 {899}

There are usually different ways to find a solution.
The simplest answer is usually defined as the answer
using the least number of operations, and if two solu-
tions have the same number of operations, a possible
refinement is to keep the one having the smallest high-
est number2.

The game, while extremely popular, never received
any serious scientific attention. There was a very early
article in the french magazine “l’Ordinateur Individuel”
in the late seventies, written by Jean-Christophe Buis-
son (Buisson [1980]), which described a simple algo-
rithm. The only article written on the subject in En-
glish was published twice (Defays [1990, 1995a]) by
Daniel Defays. Defays also published in 1995 a book in
french (Defays [1995b]) which used the game as a cen-
tral example for introducing artificial intelligence meth-
ods. But the ultimate goal of Defays was not to de-
velop an accurate solver for the game, but a solver mim-
icking human reasoning (such as the Jumbo program
by Hofstadter), including possible mistakes (in French,
Defays sometimes named his program “le compte est
mauvais”, literally the count is bad, a joke on the orig-
inal name of the game, indicating that it might make
mistakes while searching for the solution).

There are many commercial or free programs devel-
oped for this game. Some of them are bugged or use
incomplete or incorrect algorithms. Many websites in
France and in Great Britain discuss the game and how to

2There are a few differences between the french and the British
game. In the french version, all numbers are drawn at random while in
the British game, the contestants can choose how many large numbers
will be present in the six numbers set.
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program it, with lot of code, lot of statistics, and some-
times lot of errors. The first goal of this article is to do
a scientific analysis of the game regarding its complex-
ity and to provide a set of cutting edge algorithms and
codes to solve it properly. Its second goal is to inves-
tigate potential extension of the games, either to turn it
into a more complex problem, or into a (maybe) unde-
cidable problem on some of its instances.

We use a few mathematical symbols and functions in
this paper: n! is the factorial of n, Cp

n = n!
p! (n−p)! is

the number of subsets having p elements in a set of n
distinct elements, Γ(z) is the Euler Gamma function,
E(x) is the integer part of x.

2 Elementary algorithms

2.1 Decomposition in sub-problems
The first published algorithm (Buisson [1980]) used a
simple decomposition mechanism. Let’s consider the
following example: numbers 3, 50, 7, 4, 75, 8, number
to find 822. The algorithm would start from the solution
(822) and use a backward chaining approach in the Pro-
log way. However, not all operations were tried; at odd
steps, only addition and subtractions were used, while
at even steps only divisions were used. So the algorithm
would at the first step generate thirteen numbers: 822,
822 ± 3, 822 ± 50, . . . , and then try to divide all of
them by the remaining 5 (or 6 if no number was added
or subtracted) numbers. If a division succeeds, the al-
gorithm would then be applied recursively on the new
result with the remaining numbers. Here the solution
can be found by:

Operations Remaining
(822 + 50) / 4 = 218 {3,7,75,8}
(218 + 7) / 3 = 75 {75,8}
75 - 75 = 0 {8}

When 0 is reached the solution has been found.
The complexity of this algorithm is very low. If we

have n numbers, we first generate 2n + 1 numbers and
try to divide them by n − 1 numbers, so we have to do
(2n + 1)(n − 1) trial divisions. At the next step, we
would have on the average 2(n − 2) + 1 numbers to
divide by n− 3 numbers, so (2(n− 2) + 1)(n− 3) trial
divisions, and so on.

On the one hand, if all divisions succeed, we have a
maximal complexity of:
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On the other hand, if only one division succeeds
at each step, the minimal complexity is:

∑n/2
i=1(4i +

1)(2i − 1) = n3+9n−4
12 For n = 6, we have a maxi-

mal complexity of 8775 trial divisions, and a minimal
complexity of 97 trial divisions.

This algorithm was popular in the seventies, when
machines were slow, with only 8 bit addition and sub-
traction in hardware, with division and multiplication
implanted in software on microprocessors. Moreover,
programs were often written using slow, interpreted lan-
guages. Some of the initial programs were written in
Basic or in Prolog, and could not handle a large num-
ber of computations in the 30 or 45s allowed by the
game. Indeed, this algorithm was published again in
1984 (Froissart [1984]) in another journal, which means
that even 4 years later, few people were able to write
programs to solve completely the game.

This algorithm has of course serious drawbacks. It is
impossible to compute solutions requiring intermediate
results, such as the first one presented in this article,
because 31 and 29 must be built independently before
multiplying them to have 899. It is even impossible to
find solutions with divisions. Moreover, this method
can only find the exact result. If it doesn’t exist, the
computation has to be restarted with the closest number
to the number to find as a new goal.

This algorithm was later refined with faster machines
by using all possible operations at each step. At the first
step of the algorithm there are 6 numbers available and
4 possible operations, which would give 24 numbers at
most (here: 822 + 3, 822− 3, 822× 3, 822/3 and so on
with 50, 7, 4. . . ). Division is not always possible, and so
there are in fact between 18 and 24 numbers (here there
are only 19 numbers at the first step, as 822 can only
be divided by 3). This algorithm is recursively applied
until 0 is found or until no number remains in the pool
of available numbers.

Here, the solution can be found in the following way:

822 + 50 = 872 {3,7,4,75,8}
872 / 4 = 218 {3,7,75,8}
218 + 7 = 225 {3,75,8}
225 / 3 = 75 {75,8}
75 - 75 = 0 {8}

The maximal complexity of the algorithm is (6×4)×
(5 × 4) × · · · (1 × 4) = 6! 46 If we consider the gen-
eral case with n numbers the complexity is n! 4n. For
n = 6, the maximal number of operations is 491520.
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If we consider that the actual number of operations at
each step is closer to 3 than to 4, we have a minimal
complexity of n! 3n, and for n = 6 the minimal num-
ber of operations is 87480. Let’s also keep in mind that
even if division is not possible it has to be tested be-
fore being discarded, so this minimal complexity is an
inferior bound that can never be reached.

This refinement adds more solutions but it is still im-
possible to find solutions requiring intermediate results,
and impossible to find directly approximate results.

2.2 The depth first algorithm
The recursive depth first algorithm is extremely easy to
understand. Let’s consider the complete set of n num-
bers. We simply pick two of them (C2

n = n(n−1)
2 possi-

bilities) and combine them using one of the four possi-
ble operations. The order of the two numbers picked is
irrelevant as the order does not matter for the addition
and the multiplication (a+b = b+a and a×b = b×a),
and we can only use one order for the other two opera-
tions (if a > b, we can only compute a− b and a/b, and
if a < b, b − a and b/a). Then we put back the result
of the computation in the set, giving a new set of n− 1
numbers. We just repeat the algorithm until no number
remain in the pool and then backtrack to the previous
point of choice, be it a number or an operation. This is
a simple depth-first search algorithm, which is exhaus-
tive as it searches the whole computation tree.

The maximal complexity of the algorithm is given
by: (n×(n−1)

2 ×4)×( (n−1)×(n−2)
2 ×4)×· · ·×( 2×1

2 ×4).
This gives:

dmax(n) = n! (n− 1)! 2n−1 (1)

dmin(n) = n! (n− 1)! (
3

2
)n−1 (2)

For n = 6, we have a maximal number of 2764800
operations and a minimal number of 656100 operations.
The algorithm is extremely easy to implement in this
naive version. No complex data structures are needed,
and being a depth first algorithm, it requires almost no
memory.

The first recorded implementation of this algo-
rithm (Alliot [1986]) was developed for an Amiga 1000
(a MC68000 based microcomputer with a 7MHz clock).
It was written in assembly language and solved the
game in less than 30s. However, this implementation
was not perfect, as it worked only with unsigned short
integers (integers between 0 and 65535), and was thus

unable to compute numbers that required intermediate
results higher than 65535 (and there are some, such as
finding 996 with {3, 3, 25, 50, 75, 100} which requires
using 99600 as an intermediate result).

2.3 The breadth first algorithm
The breadth first algorithm is a little bit more difficult
to understand. It is also a recursive algorithm, but it
works on the partitions of the set of numbers. The first
presentation of this algorithm seems to be Pin [1998].

• First, we create all sets generated by only one ele-
ment. With the same example, we have of course
6 elements g({3}) = {3}, g({50}) = {50},
g({7}) = {7}, g({4}) = {4}, g({75}) = {75},
g({8}) = {8}

• Next we create the sets of all numbers that can
be computed using only two numbers. Here for
example all the numbers generated by {3, 50}
are the elements of g({3}) applied to the ele-
ments of g({50}) which give the set g({3, 50}) =
g({3}).g({50}) = {53, 47, 150}. {3} and {7}
give g({3, 7}) = {10, 4, 21}. {50} and {7} give
g({50, 7}) = {57, 43, 350}. We will haveC2

6 such
sets.

• Next we create the sets of all numbers that can be
computed using only 3 numbers. For example,
the set of numbers generated by the 3 numbers 3,
50 and 7 is g({3, 50, 7}) = g({3}).g({50, 7}) ∪
g({50}).g({3, 7}) ∪ g({7}).g({50, 3})
Here for example g({3}).g({50, 7}) =
{54, 60, 171, 19, 40, 46, 129, 347, 353, 1050}
There are C3

6 such sets.

• The algorithm proceeds with all sets gen-
erated by 4 numbers. For example the set
generated by {3}, {50}, {7} and {4} is
g({3, 50, 7, 4}) = g({3}).g({50, 7, 4}) ∪
g({50}).g({3, 7, 4}) ∪ g({7}).g({50, 3, 4}) ∪
g({4}).g({3, 50, 7}) ∪ g({3, 50}).g({7, 4}) ∪
g({3, 7}).g({50, 4})∪ g({3, 4}).g({50, 7}) There
are C4

6 such sets.

• We proceed with all sets generated by 5 numbers,
applying exactly the same algorithms. There are
C5

6 such sets.

• Then we create the set generated by all six num-
bers.
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The complexity of this algorithm is not so easy to

compute. It is sometimes mistakenly presented as being
2n (Mochel [2003]), but it is a very crude estimation.

If we callN(p) the number3 of elements in a set gen-
erated by p elements, the total number of operations will
be
∑n

p=1 C
p
nN(p). We still have to computeN(p). It is

possible to establish a recurrence relationship between
N(p) and N(p− 1), N(p− 2), etc. Let’s see that on an
example. N(4) is the sum of two terms:

• N(3)×N(1)× 4×C3
4 which is the number of el-

ements in a set built by combining with the 4 oper-
ations a set havingN(1) elements and a set having
N(3) elements. There are C3

4 = 4 such numbers.
For example for {1, 2, 3, 4}, we have {1, 2, 3}.{4},
{1, 2, 4}.{3}, {1, 3, 4}.{2}, {2, 3, 4}.{1}

• N(2) × N(2) × 4 × (C2
4/2) For exam-

ple, for {1, 2, 3, 4} we combine {1, 2}.{3, 4},
{1, 3}.{2, 4} and {1, 4}.{2, 3}

More generally, we have:
N(p) = (

∑p−1
i=1 C

i
pN(i)N(p− i))/2× 4

A simple computation gives:
N(p) = 4p−1

∏p−1
i=1 (2i− 1)

And thus the complexity for n numbers is:

bmax(n) =

n∑
p=1

Cp
n 4p−1

p−1∏
i=1

(2i− 1) (3)

bmin(n) =

n∑
p=1

Cp
n 3p−1

p−1∏
i=1

(2i− 1) (4)

For n = 6 we have a maximal number of 1144386 oper-
ations, half the number of the operations required by the
depth first algorithm, and a minimal number of 287331
operations.

3 Implementation and refinements
To compare the algorithms, the programs were all writ-
ten in Ocaml (INRIA [2004]). The implementation was
not parallel and the programs were run on a 980X. For
very large instances, an implementation of the best al-
gorithm (depth first with hash tables) was written in C
and assembly language. MPI (board [1997]) was used
to solve problems in parallel and the program was used
on a 640 AMD-HE6262 cores cluster using 512 cores.

3The N(p) are probably related to Bell numbers, but they are not
the same

With the same algorithm, the C program on a single
core is twice faster than the Ocaml program.

The 980X used in this section is a 6 cores Intel pro-
cessor running at 3.33Ghz (a clock cycle of 0.3ns) with
a 32kb+32kb L1 cache by core, a 256kb L2 cache
by core and 12Mb of L3 (Last Level Cache or LLC)
cache common to all cores. Memory timings (Levinthal
[2009]) for the Core i7 family and Xeon 5500 family are
roughly of 4 clock cycles for L1 cache and 10 cycles for
L2 cache. L3 cache access times depend on whether the
data is local to the core (40 cycles), shared with another
core (65 cycles) or modified by another core (75 cy-
cles). Here, the application is completely local to one
core, so it is safe to assume an access time of 40 cycles.
Outside the L3 cache, access times depend on the num-
ber and type of DIMMs, frequency of the memory bus,
etc. . . A good guess is around 60ns, which is around 5
times slower than the L3 cache (40 cycles takes approx-
imately 12ns).

In this section we study the standard countdown
game: n = 6 numbers are drawn from a pool of 24,
with all numbers in the range 1-10 present twice, plus
one 25, one 50, one 75 and one 100. The number of
different possible instances is:

C6
14 with no pair

+ C1
10 × C4

13 with one pair
+ C2

10 × C2
12 with two pairs

+ C3
10 with three pairs

= 13243

Programs are so fast that trying to accurately measure
the execution time of a single instance is impossible.
So, in the rest of this section, all programs solve the
complete set of instances and the time recorded is the
time to complete the entire set: when a time of 160s
is given, the mean time of resolution of one instance is
160/13243 = 0.01s

3.1 The depth first algorithm
Implementing the naive version of the depth-first algo-
rithm is a straightforward process. First the algorithm
searches the entire space with the pool of initial num-
bers and marks all numbers reached as being solvable.
Then if the number to find is marked, it is solvable. In
case of failure, there is no need to start a new search:
finding the closest number marked as solvable in the ar-
ray is enough.
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Storing solutions is easy: each time we compute a

number, we first check if it has been found already. If it
hasn’t been found, we store the list of operations which
led to it (the list to store is just the branch currently
searched). If the number has already been found, we
store the new solution if and only if the list of operations
for this solution is smaller than the one already stored.
The algorithm being a depth first algorithm, we have no
guarantee that the first solution found is the shortest.

There are a few simple improvements to implement,
that will be used by all subsequent programs:

• never divide by 1, because it doesn’t generate any
new number.

• never multiply by 1 for the same reason.

• never subtract two equal numbers

• if a− b returns b then discard this branch

• if a/b returns b discard also this branch

• as stated in the previous section, it is useless to test
the pair (a, b) and the pair (b, a). If a >= bwe just
compute a + b, a ∗ b, a − b and a/b (if b divides
a). If b > a, we use b− a instead of a− b and b/a
instead of a/b.

The performance of the algorithm is good: the native
code version solves the complete problem (the 13243
instances) in 160s, or a mean of 0.01s by instance.

3.2 The depth first algorithm with hash
tables

The idea is to use for this problem an (old) (Zobrist
[1970]) improvement which has been often used in
many classical board games: hash tables.

First, we notice that, when solving the game, if the
same set of numbers appears a second time in the res-
olution tree, the branch can be discarded: as it is a
depth first search where the size of the set of numbers
strictly decreases by one at each level in the tree, we
know that this branch has already been fully developed
somewhere else in the tree and that all possible results
have already been computed and all numbers that can
be found with that set of numbers have already been
marked. We just need a way to uniquely identify an
identical set of numbers, and to do this in a very short
amount of time as this test will take place each time a
new number is generated.

There is, as usual with hash tables, a trade-off be-
tween generality (being able to identify any set and
store all hash values) and speed (losing some general-
ity to be faster). There are two main problems when
using hash tables: computing the hash value and stor-
ing/retrieving it.

For computing the hash value, Ocaml provides a
generic hash function that operates on any object and
returns a positive integer that can be used as an identi-
fier of the object. However, using this function on sets
of numbers proved to be much too slow. Thus a faster,
incremental approach, was used: an array h(x) of 64
bits random values is created at the start of the program.
Each time a number x is added to the pool of numbers,
h(x) is added to the hash value, and when x is removed
from the pool, h(x) is subtracted from the hash value.
This is slightly different from the hash computation in
board games where the function used is the faster xor
function, both for adding and removing objects. How-
ever, xor can not be used here as two identical numbers
can be in the pool at the same time and would cancel out
each other: the set {1, 1, 2, 3, 4} would have the same
hash value as {2, 3, 4}.

Storing the hash value required some experimental
tests. Using a single set structure to store all values was
ruled out from the start, as it would have been way too
slow (the log n access time is too important). Thus a
more classical array structure was chosen, where a mask
of n-bits was applied to the 64-bits hash value, returning
an index for this array (the size of the array is of course
2n). There were two remaining problems to solve: how
to handle hash collisions and how large the array must
be.

Hash collisions happen when two different objects
having different hash values have the same hash index.
They can be solved in two (main) ways: maintaining a
set of values for each array element, or having a larger
array to minimize hash collisions. However having a
too large array can also have detrimental consequences:
as the access to the hash array is mostly random, cache
faults are very likely to happen at each access if the ar-
ray doesn’t fit in the cache. The largest the part of the
array out of the cache, the higher the probability to have
a cache fault and to seriously slow down the program.

On this processor, the maximal size of an array
of 64 bits integers that would fit in the L2 cache is
215 = 32768 elements and the maximum size of a
64 bits integer array that would fit in the L3 cache is
220 = 1048576 elements. It is important to remember
that the L3 cache is shared by all cores, and thus degra-
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dation might (or might not) appear for smaller values as
other processes are running. On figure 1, we have the
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hash
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Figure 1: Influence of the size of the hash table

result of the experimentation. The x-axis is the size of
the hash table in bits, the y-axis the time needed to solve
the 13243 instances. The blue plot is the time without
hash tables, the red one the time with a simple array
hash table and the green one the time with an array con-
taining sets to hold all numbers.

As expected, the cache issue is a fundamental one,
and results are in accordance with the theory. Let’s con-
centrate on the red plot, which is the easiest to interpret.
As long as we remain in the L2 cache (up to 15), in-
creasing the size of the hash table enables to store more
elements and thus to cut more branches in the tree. For
n = 15, the 13243 instances are solved in 26s, 5 times
faster than without hash tables. Over n = 15, part of
the hash table is in the L3 cache and thus, while we are
still cutting more branches as we are storing more ele-
ments, L2 cache faults are slowing the program faster
than we are accelerating it by cutting more branches.
For n = 20, we begin to have problems to keep the
hash table in the L3 cache, and for n = 21 there are so
many L3 cache faults that the program is slower than
what it was without hash tables.

The green plot shows that when we store all results
in an array of sets, there are quickly too many elements,
and thus we are never able to remain inside the L2
cache. The minimal time is 67 seconds which is the
time we also have for n = 19 with the simple array
structure when we still fit inside the L3 cache. There
are however not too many elements as data clearly re-
main inside the L3 cache as long as the size of the hash
array itself is less than the size of the L3 cache. As soon
as we are out of the L3 cache, the two methods give the

same (bad) results: times are equal for n = 21 as most
of the time is spent in cache faults.

This might seem like a strange result but the reason
is easy to understand: the program is doing very lit-
tle work between two accesses to the hash table: one
arithmetic operation and a few tests, reads and stores.
All these operations use data and code that remain in
the L1 cache, and they are thus extremely fast. Then,
memory accesses can become the bottleneck of the pro-
gram. Let’s also remember that the number of gener-
ated positions with the depth-first algorithm is between
6! 5! ( 3

2 )5 = 656100 and 6! 5! ( 4
2 )5 = 2764800, and that

we never store the leaves of the tree, which implies that
we could store at most around 500000 positions, and
we store much less than that, as many generated posi-
tions are identical. As 500000 is almost 219, n = 21 is
overkill anyway.

There is however a lesson to remember here: despite
what many people say or write, the larger is not always
the better for hash tables. Sometimes, you first have to
keep the hash in the cache.

3.3 The breadth first algorithm
Implementing the breadth first algorithm is not much
more complicated than implementing the depth first al-
gorithm. We first need to create a data structure that
contains the information needed to build the numbers
generated by a subset of the initial pool. For example,
we need to know how to build the numbers generated by
the first, second and fourth number of pool. In order to
do this efficiently, we create an array of list where the i-
th element contains the list of pairs of sets to combine in
order to build the numbers generated by the subset rep-
resented by the binary decomposition of i. This might
sound complicated, but is easy to understand with a few
examples:

• For i = 16 we have i = 16 = 100002, so this
element will just point to the fifth element in the
initial pool of numbers.

• The element at i = 5 = 1012 points to the list of
pairs of sets to combine. Here, we have to combine
with the four operations the first element and the
third element of the original pool, so there is only
one pair (1, 3).

• The element at i = 25 = 110012 will contain the
pairs (1, 24), (8, 17) and (9, 16) because to have
all elements generated by the first, the fourth and
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the fifth element of the original pool we have to
combine with the four operations (a) all elements
generated by the fourth and the fifth with the first
element, (b) all elements generated by the first and
the fourth with the fifth element and (c) all ele-
ments generated by the first and the firth with the
fourth element.

• The element at i = 57 = 1110012 will contain:

– the pairs (1, 56), (8, 49), (16, 41) and
(32, 25) which are the numbers generated by
the subsets generated by three elements to
combine with the numbers generated by the
subsets of one element

– the pairs (9, 48), (17, 40), (33, 24) which are
the numbers generated by the subsets gen-
erated by two elements combined with the
other numbers generated by the subsets of the
complementary two elements subsets.

This array of list of pairs can be pre-computed and
stored once and for all. The size of the array is 2n − 1
where n = 6, so the array here has 63 lists of pairs.

The rest of the algorithm is straightforward. Another
array of the same size is used, where the i-th element is
an array that will hold all numbers generated for the i
index.

Let’s see that on an example. If the initial pool of
numbers is {7, 8, 9, 10, 25, 75} we first copy 7 at posi-
tion 1, 8 at position 2, 9 at position 4, 10 at position 8, 25
at position 16 and 75 at position 32. Then, all elements
with an index having only 1 bit are filled. Then we fill
all elements having an index with 2 bits. For example,
element 3 = 112 is {7 + 8, 8− 7, 7× 8} = {15, 1, 56},
element 5 = 1012 is {7+9, 9−7, 9×7} = {16, 2, 63},
element 6 = 1102 is {17, 1, 72}, and so on. When
all elements with a 2-bits index are filled, elements
with a 3-bits index are filled. For example element
7 = 1112 is {15 + 9, 15− 9, 15× 9, 1 + 9, 9− 1, 56 +
9, 56− 9, 56× 9} ∪ {16 + 8, 16− 8, 16 ∗ 8, 16/8, 2 +
8, 8 − 2, 8 × 2, 8/2, 63 + 8, 63 − 8, 63 × 8} ∪ {17 +
7, 17 − 7, 17 × 7, 1 + 7, 7 − 1, 72 + 7, 72 − 7, 72 ×
7} = {24, 6, 135, 10, 8, 65, 47, 504, 24, 8, 128, 2, 10, 6,
16, 4, 71, 55, 504, 24, 10, 119, 8, 6, 79, 65, 504}.

There remains a few implementation details to solve.
Whether it is better to use an array of arrays or an array
of sets is unclear. Both structures have their advantages
and their disadvantages. An array has an access time
which is constant, while inserting a new number in a

set of size n takes log n operations when using a binary
balanced tree structure for the set. However, when us-
ing sets, duplicates numbers are never kept and there
are lot of duplicates: even in the simple example above,
there are already many of them in the 3-bits 7th element.
Another (minor) advantage of the sets is that they use
exactly the right number of elements while the size of
arrays has to be pre-computed at allocation time; how-
ever this minor point may be circumvented in different
ways: first we know a quite good estimate of the size
of each array, as the N(p) numbers computed in sec-
tion 2.3 are an upper bound of the size of a p-bits array.
Moreover, it is possible to break the (large) arrays into a
list of smaller arrays which are allocated when needed.

Last, but not least, it is important to notice that while
all numbers have to be generated (of course), numbers
generated by the full set of the original pool (the array
element with all bits set to 1) do not have to be stored, as
they will never be re-used. It is an extremely important
optimization of the code, as they are, and by far, the
largest set.

Experimental results with n = 6 are the following
: the breadth first algorithm with an array-array struc-
tures solve the 13243 instances in 53s, and in 89s with
an array-set structures. The results of all the algorithms
are summarized in table 1. The most efficient algorithm

Algorithm Total Time By instance
Depth first 160 12.10E-3
Depth first / hash 26 1.96E-3
Depth first / hash-set 67 5.05E-3
Breadth first / arrays 53 4.00E-3
Breadth first / sets 89 6.72E-3

Table 1: Comparison of the algorithms for n = 6 and
13243 instances

for n = 6 is the depth first algorithm with standard
hash tables. The worst is the basic depth first algorithm.
Results are in accordance with the complexity analysis
done in section 2, as breadth first search is more effi-
cient than depth first search without hash tables. How-
ever, it would be extremely interesting to see what hap-
pens with higher values of n.

The depth first algorithm with hash tables is ex-
tremely efficient. There are other programs available
on the net which claim to solve also the complete set of
instances such as Fouquet [2010], but in 60 days (!).

7



Prep
rin

t
4 Scaling things up

Since its beginning in 1972, the numbers round of the
Countdown game has never evolved, while its sister
game, the letters round, has seriously changed, going
from 7 letters in 1972 to 10 letters today. In 1972, com-
puters were enable to solve the numbers round; nowa-
days, it is solvable in less than a millisecond. So, as
in many games where computers have become much
better than human beings, the interest for the game has
faded. Moreover, the game by itself is not very difficult
on the average for human beings4

There are thus two questions: is it possible to modify
the game in order to turn it into a difficult thing for a
computer, and is it possible to turn it into a game more
difficult for the players without modifying it too much?

There are two ways to change the difficulty of the
game. The first one is to choose the target number based
on the values in the number set, or even to choose only a
tuple (numbers set,target value), such as the number of
operations for finding the target with the given numbers
set is high.

The other idea comes from the complexity study
which provides a hint: when the size of the sets of avail-
able numbers increases, the game becomes apparently
extremely difficult. If we use the complexity formu-
las of sections 2.2 and 2.3, we plot (figure 2) in blue
the log10 of the number of operations required by the
depth first algorithm and in red the same quantity for
the breadth first algorithm. The breadth first algorithm

2 4 6 8 10

5

10

15

20

Figure 2: Complexity comparison. Blue: depth first.
Red: breadth first

4They should change the random number thingy so it doesn’t come
up with a really easy target number, meaning the contestants sit there
like stiffs for nearly 30 seconds Virtue [2014].

quickly becomes much more efficient than the depth
first algorithm. However, its space complexity is also
increasing at almost the same rate as its time complex-
ity, while the space complexity of the depth first algo-
rithm remains extremely small. But these results do not
take into account the hash table effect for the depth first
algorithm, or the set effect for the breadth first algo-
rithm, which are both going to become primary factors
as the number of duplicate positions and numbers will
be much more important as there will be much more
ways to compute numbers (especially small numbers)
with a larger set of initial numbers. The number of gen-
erated numbers is also going to increase: this means
that to have a depth first algorithm efficient, the size of
the hash tables has to be increased, which will take us
out of the L2 and the L3 cache, and thus slow down
significantly computations.

To compute the total number of different instances5,
we can extend the formula in section 3:

Cn
14 with no pair

+ C1
10 × Cn−2

13 with one pair
+ C2

10 × Cn−4
12 with two pairs

+ ...

+ Ci
10 × Cn−2i

14−i with i pairs
+ ...

+ C
E(n/2)
10 C

n−2E(n/2)
14−E(n/2) with E(n/2) pairs

=
∑E(n/2)

i=0 Ci
10 × Cn−2i

14−i

This formula is valid for n ≤ 20 and the number of
instances is n(7) = 27522, n(8) = 49248, n(9) =
76702, and n(10) = 104753. The results are summa-
rized on figure 3.

4.1 Solving for n = 6

4.1.1 Standard game

For n = 6 we have 13243 possible sets. In the
standard numbers round of the countdown game, we
search for numbers in the range 101–999, so there are
899×13243 = 11905457 possible problems. In table 2
we have the distance to the closest numbers: 10858746
games are solvable (91.2%), 743896 problems (6.25%)
have a solution at a distance of 1 (the nearest number).

1226 instances out of 13243 (9.2%) solve all tar-
get numbers in the range 101-999. One instance

5The number of possible instances is not an indicator of the diffi-
culty of the game, but we need these numbers in the next sections.
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Figure 3: Number of instances (n = 6)

distance solved %solved cumulative
0 10858746 91.21% 91.21%
1 743896 6.25% 97.46%
2 100517 0.84% 98.30%
3 36186 0.30% 98.60%
4 19387 0.16% 98.76%

Table 2: Distance to the solution

({1, 1, 2, 2, 3, 3}) solves none. On figure 4, we see that

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600  700  800  900

accumulated frequencies

Figure 4: x-axis: number of numbers not found, y-
axis:percentage of instances

9998 (75.5%) of the possible instances solve all possi-
ble games with less than 100 numbers missing in the
range 101–999.

The easiest numbers to find are 102, 104 and 108
which are found by 13240 instances (99.98%). The
most difficult number to find is 947, which is only found
by 9017 instances (68%). On figure 5, we see that, as
we might have expected, the easiest numbers to find are

 65

 70

 75

 80

 85

 90

 95

 100

 100  200  300  400  500  600  700  800  900  1000

percentage of instances

Figure 5: x-axis: number to find, y-axis:percentage of
instances finding this number

the lowest, and the most difficult are the highest. Num-
bers below 300 are all found by 95% of the possible
instances.

Another interesting statistic for the player of the
British version of the game is how the distribution of
large (25, 50, 75, 100) and small (1 to 10) numbers in-
fluence the number of solutions available. Each large
number is present in C5

13 + C1
10C

3
12 + C2

10C
1
11 = 3982

instances (30%) of the 13243 instances, while each
small number appear in C5

13 + C4
13 + (C1

10 − 1)C3
12 +

C1
9C

2
12+(C2

10−C1
9 )C1

11+C2
9 = 5008 instances (38%).

On figure 6, we see the percentage of problems
solved when a number x is in the original set. The worst

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0  2  4  6  8  10  12  14

percentage of problems solved

Figure 6: y-axis:percentage of problems solved when
number x is in the set (11 ↔ 25, 12 ↔ 50, 13 ↔ 75,
14↔ 100)

number is 1 (only 86% problems are solved when 1 is
in the set) and the best is 75 (almost 96% are solved
when 75 is in the set). But the differences are not
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that important between large and small numbers: for
x = 9, 93.5% are solved, not that far from the 94.2%
for x = 25.

In table 3, we see how the number of large num-
bers in the set influences the resolution. For example
there are C6

10 + C1
10C

4
9 + C2

10C
2
8 + C3

10 = 2850 in-
stances with no large numbers, and thus 2850 ∗ 899 =
2562150 problems and 1963762 of these problems can
be solved (77% success rate). The influence of large

nb large problems solved %solved
0 2562150 1963726 77%
1 5221392 4966076 95%
2 3317310 3192103 96%
3 755160 693131 92%
4 49445 43710 88%

11905457 10858746 91%

Table 3: Percentage of instances solved as a function of
the number of large numbers in the set

numbers is much more visible here. Instances with 1–
3 large numbers have a success rate of 92–96%, and
even with the four large numbers (25,50,75,100) the
success rate is higher that with none of them. How-
ever, the importance of large numbers must not be over-
estimated, as Tunstall-Pedoe [2013] does. The 4-tuple
(25,50,75,100) has a success rate of 88%, much less
than (5,7,9,100) which has a success rate of 99.86%
and contains only one large number (the worst 4-tuple
is (1,1,2,2) with a success rate of 37%).

There is another site (Lemoine and Viennot [2012])
in french which advertises the kitsune program and
gives some stats. However, it takes a few hours to com-
pute them, while this program takes only a few seconds.
So, for the fans of statistics and results, here are some
other “funny” facts:

• The best 3-tuple is (7,9,100) with a success rate
of 99%, the worst is (1,1,2) (58%). The best pair
is (7,100) (97.7%), the worst (1,1) (73%). The
worst 5-tuple is (1,1,2,2,3) (14%). There are 7
5-tuples which have a success rate of 100% (any
number can be added to any of these 5-tuples,
and the resulting set will solve the 899 prob-
lems): (4,6,7,9,100), (2,5,8,9,100), (2,5,6,9,100),
(5,6,7,9,100), (4,7,9,10,100), (2,7,9,10,100),
(2,4,7,9,100). However an additional number is
needed.

• No five numbers set can solve by itself all the
problems. {4, 6, 7, 9, 100} and {2, 5, 8, 9, 100}
solves 753 out of 899, {2, 5, 6, 9, 100} solves 751.
{2, 3, 8, 9, 100} is the next best with 748 solved
but it doesn’t appear in the list of the best 5-tuples.

• The success rate drops quickly with the size of the
set. With four numbers sets, the best we can get is
{2, 5, 8, 100} which solves only 159 problems.

• There is no instance with four large numbers
which solves all problems

• There are five instances with only small num-
bers which solve all problems, the ones with
the least sum (41) being {2, 5, 7, 8, 9, 10} and
{3, 4, 7, 8, 9, 10}

• There is no instance solving all problems with all
numbers less or equal to 9.

• The instance with the largest weight (244) solving
all problems is {2, 8, 9, 50, 75, 100} It is also the
only instance containing 50, 75 and 100 that solves
all problems.

• There is only one instance solving all prob-
lems with all numbers greater or equal than 8:
{8, 9, 9, 10, 25, 75}

• the problem which requires the largest intermedi-
ate result is {3, 3, 25, 50, 75, 100} and 996, with
50 + 3 = 53, 53 × 25 = 1325, 1325 + 3 =
1328, 1328 × 75 = 99600, 99600/100 = 996
Thus programs using only short unsigned integers
(up to 65535) could not solve all problems.

4.1.2 Selecting problems

As all instances have been solved, we have a complete
database; for a given number set and a given target num-
ber we know if it can be solved and how many op-
erations are necessary to solve it, or how close is the
nearest findable number when it can’t be solved. With
this database, it is extremely easy to select only inter-
esting problems. There can be many different selection
criteria: solvable problems requiring more than 4 (or
5...) operations, or unsolvable problems with the near-
est number at a minimal given distance, or unsolvable
problems with the nearest number requiring more than
4 operations, etc. . . This would turn the number round
in something worth watching again.
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4.1.3 Using a larger set to pick numbers

Another way to make the game harder would be to
use all available numbers between 1 and 100 when
picking the set. Building the full database is much
more computing intensive. In the standard game we
have 13243 sets, when picking k numbers between
1 and n (including repetitions) we have Ck

n+k−1 =
C6

100+6−1 = 1609344100 ' 1.6 109 possible sets, and
1446800345900 ' 1.4 1012 problems. Building the
database took 12 hours on the cluster described in sec-
tion 3.

Table 4 gives the distance to the solution, as table 2
does for the standard game. Percentages are similar to
the standard problem.

dist solved %solved cumulative
0 1329106855477 91.86% 91.86%
1 105091143229 7.26% 99.12%
2 8508187551 0.59% 99.71%
3 2112923902 0.14% 99.85%
4 808768195 0.06% 99.91%

Table 4: Distance to the solution

In figure 7, we have the same results as in figure 5.
Percentages are higher which means that on the aver-
age, the problem is easier to solve with numbers picked
randomly between 1 and 100.
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Figure 7: x-axis: number to find, y-axis:percentage of
instances finding this number(n = 6, extended set)

There are 73096123 (4.5%) sets that solve all prob-
lems. This is less in percentage (1226/13243 ' 9.2%)
than for the standard game, but there are 60000 times
more sets if we consider the raw numbers. So we can
select some sets with specified characteristic that would

make them difficult for human beings, while maintain-
ing the diversity of the problem. There are for exam-
ple 52253 sets that solve all problems while being com-
posed only by prime numbers, 48004 by primes ≥ 2,
22136 by primes ≥ 3, 8912 by primes ≥ 5, 4060 by
primes≥ 7, 1526 by primes≥ 11, 500 by primes≥ 13,
132 by primes ≥ 17, and 4 by primes ≥ 23. As in-
credible as it might look, the set {23, 29, 31, 37, 43, 61}
solves the 899 problems.

Another criteria could be to select sets where all num-
bers are greater than a given one; there are for ex-
ample 20602 sets with all numbers > 25 that solve
the 899 problems. The set {35, 37, 38, 43, 45, 59} is
one of them. . . This method can be combined with the
one described in section 4.1.2, by choosing only target
numbers that require a minimum number of operations.
Here again, the possibilities are endless, and it would
turn the numbers game into something really difficult
while always using 6 numbers.

4.2 Solving for n = 7

Using equations 1, 2, 3 and 4 we find that the maximal
and minimal number of operations for the depth first
algorithm are dmax(7) = 232243200 and dmin(7) =
41334300. For the breadth first algorithm, we have
bmax(7) = 49951531 and bmin(7) = 9379195. We
thus have dmax(7)

dmax(6)
= 84, dmin(7)

dmin(6)
= 63, bmax(7)

bmax(6)
= 43,

bmin(7)
bmin(6)

= 32.
In table 5 we have the results of the experimentation

with the five algorithms with n = 7.

Algorithm Total Time By instance
Depth first 740 740E-3
Depth first / hash 36 36E-3
Depth first / hash-set 114 114E-3
Breadth first / arrays 109 109E-3
Breadth first / sets 131 131E-3

Table 5: Comparison of the algorithms for n = 7 and
1000 instances

We see that with the depth first algorithm, the time for
solving instances with 7 numbers is 62 (740/12) times
larger than with n = 6. This is completely compatible
with the minimal complexity of this algorithm, which
predicts a ratio of 63.

With the breadth first algorithm, the time for solv-
ing instances with 7 numbers is 28 (109/4) times larger
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than with n = 6. This is slightly less than what was
expected (a ratio of 32) but remains in line with what
was expected.

With the depth first algorithm with hash table, the ra-
tio is only 18. Hash tables are getting more and more
efficient, as small numbers are generated more often.
An analysis of the optimal size of the hash table shows
that the best size is around 219 instead of 215 for 6 num-
bers: more space is needed to hold more numbers, even
if data can not remain inside the L2 cache.

Regarding the resolution of problems we see on fig-
ure 8 how numbers are found. With an extra number in
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Figure 8: x-axis: number to find, y-axis:percentage of
instances finding this number for n = 7

the set, the success rate becomes extremely high. All
numbers are found by at least 98.5% of the instances:
the problem has become too easy.

If we try to find numbers in the range 1000–10000
instead of 100–1000, we see on figure 9 that the prob-
lem is now too difficult. The right solution is to look
for numbers in the range 1000–6000 (the most difficult
number to find is then 5867, with 65% instances finding
it) . The success rate is now almost the same as what it
was with 6 numbers in the range 100–1000, but with a
resolution time which is 20 times higher. However, the
solution of a problem is found by the best algorithm in
36 milliseconds, which is still much too fast to put the
machine in the same league as a human being. . .

4.3 Solving for n = 8

We have here bmin(8) = 363099899, dmin(8) =

3472081200 and dmin(8)
dmin(7)

= 84 and bmin(8)
bmin(7)

= 39.
In table 6 we have the results of the experimentation

with the five algorithms with n = 8.
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Figure 9: x-axis: number to find, y-axis:percentage of
instances finding this number for n = 7

Algorithm Total Time By instance
Depth first 610 61
Depth first / hash 12 1.2
Depth first / hash-set 37 3.7
Breadth first / arrays 44 4.4
Breadth first / sets 41 4.1

Table 6: Comparison of the algorithms for n = 8 and
10 instances

We see that with the depth first algorithm, the time
for solving instances with 8 numbers is 83 (61/0.740)
times larger than with n = 7. This is completely com-
patible with the minimal complexity of this algorithm,
which predicts a ratio of 84.

With the breadth first algorithm, the time for solving
instances with 8 numbers is 40 (4.4/0.109) times larger
than with n = 7. This is exactly what was expected
(a ratio of 39). We notice that the breadth-first-set al-
gorithm is becoming faster than the breadth-first-array
algorithm. With 8 numbers, we are generating more
and more small duplicate numbers, and thus the time
lost with the log n access for sets is now compensated
by the time gained with the elimination of all these du-
plicates numbers. With the depth first algorithm with
hash table, the ratio is 33. The memory needed to run
the breadth-first-array algorithm is 1.5Gb. The breadth-
first-set algorithm still has small memory requirements.
For the depth-first with hash, the optimal value of the
size of the hash table is around 223 elements.

The results are presented in figure 10. Computation
took a few hours. There again, with an additional num-
ber, the problem becomes too easy to solve in the pre-
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Figure 10: x-axis: number to find, y-axis:percentage of
instances finding this number for n = 8 (sampled every
9 points)

vious range (1000–10000). The correct range must be
extended up to 35000 as we have then roughly the same
mean success rate as with the standard game (the most
difficult number to find is 34763 with a success rate of
66%). However, if the depth first program is now un-
able to compute the solution in less than 30s (English
game) or 45s (french game), the depth-first with hash
still finds a solution in 1.2s on the average.

4.4 Solving for n = 9

We have dmin(9)
dmin(8)

= 108 and bmin(9)
bmin(8)

= 48. Thus the
standard depth first algorithm should take more than
6000s to solve a single instance and the breadth first al-
gorithm with arrays should need around 40Gb of mem-
ory, that the computer used for these tests don’t have.

In table 7 we have the results of the experimentation
with three algorithms with n = 9. The depth first al-
gorithm wasn’t, as expected, able to solve even a single
instance in less than 1 hour. The breadth first algorithm
with arrays generated an “Out of memory” error.

Algorithm Total Time By instance
Depth first - -
Depth first / hash 147 14.7
Depth first / hash-set 543 54.3
Breadth first / arrays - -
Breadth first / sets 467 46.7

Table 7: Comparison of the algorithms for n = 9 and
10 instances

The results are presented in figure 11. We have to
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Figure 11: x-axis: number to find, y-axis:percentage of
instances finding this number for n = 9 (sampled every
37 points)

extend the range up to around 200000 (the most difficult
number to find is 190667 with a success rate of 66%).
Computing complete results took 3 days.

4.5 Solving for n = 10

For n = 10 we are at last entering uncharted territory.
The average time to solve one instance of the problem
seems to be around 1 to 3 minutes, so it seems impossi-
ble to use an exhaustive algorithm. We are at last back
in the heuristics land.

The results are presented in figure 12.
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Figure 12: x-axis: number to find, y-axis:percentage
of instances finding this number for n = 10 (sampled
every 509 points)

Complete results were computed in 20 hours on the
cluster described in section 3. Some pools such as
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{5, 6, 7, 8, 9, 10, 25, 50, 75, 100} took more than one
hour to complete. We had to extend the range over
1000000 to have similar results regarding success rate
(up to 1000000 the most difficult number to find is
986189 with a 67% success rate).

5 A slightly modified problem
The problem is easy to solve because it is a finite one: at
each step, the set of available numbers is reduced by one
unit, and thus any computer program can solve it even
with a very large set of numbers. An other solution to
turn the game into a more interesting one would be to
add a simple operation: the possibility to replace any
available number by its square.

Let’s see this on an example: how to find 999 using
{1,2,3,4,5,6}. This is an unsolvable problem without
the square operation, but it is now not the case anymore:

Operations Remaining
3 x 6 = 18 {1,2,4,5,18}

18 x 18 = 324 {1,2,4,5,324}
4 + 5 = 9 {1,2,9,324}

324 + 9 = 333 {1,2,333}
1 + 2 = 3 {3,333}

333 x 3 = 999 {999}

This modification changes the nature of the game, be-
cause it is not any more a “finite” one, at least in theory.
Thus, we can have long and complex computations to
find results. Let’s see it on an example: how to find 862
using the {1,10,10,25,75,100} set. The shortest compu-
tation requires 14 steps (while in the standard game we
can never have more than 5 steps) and uses very large
numbers:

{1,10,10,25,75,100}
10 - 1 = 9
{9,10,25,75,100}
100 x 100 = 10000
{9,10,25,75,10000}
9 x 9 = 81
{81,10,25,75,10000}
10 x 10 = 100
{81,100,25,75,10000}
100 x 100 = 10000
{81,10000,25,75,10000}
10000 + 10000 = 20000
{81,20000,25,75}
75 x 75 = 5625
{81,20000,25,5625}
5625 x 5625 = 31640625
{81,20000,25,31640625}

20000 x 20000 = 400000000
{81,400000000,25,31640625}
400000000 - 31640625 = 368359375
{81,368359375,25}
25 x 25 = 625
{81,368359375,625}
625 x 625 = 390625
{81,368359375,390625}
368359375 / 390625 = 943
{81,943}
943 - 81 = 862

The program has to be slightly modified to include
the possibility to raise a number to its square at any
time, and it must also be limited: we have to set an
upper bound A above which we do not square numbers
anymore. Without this bound, the algorithm might not
stop. Moreover, because of implementation issues, the
maximal value ofA that can be tested with 64 bits arith-
metic is 45000.

The possibility of squaring numbers seriously in-
creases the complexity of the program. As we are only
interested in finding whether a given set is able to solve
all numbers in the range 101–999, we stop as soon as
all these numbers have been found and do not keep on
searching for the shortest solution available. With this
optimization, and by using all the other optimizations
presented above, computation time is not really an is-
sue, at least for values of A up to 50000.

We see in table 8 results for different values of A.
For A = 1 the results are the results of the stan-

dard algorithm, because squaring 1 gives 1: 1046711
instances (of 11905457) are not solve, and there is at
least one number not found for 12017 sets of numbers.
The number of unsolved instances reduces quickly in
the beginning of the curves, but then slows down.

The results are presented graphically in figure 13.
The 49 instances not solved (with A = 45000) are the
following ones:

1 1 10 10 25 100: 858
1 1 10 10 25 75: 863
1 1 10 10 50 100: 433 453 547 683 773

853
1 1 10 10 50 75: 793 853 978
1 1 10 10 75 100: 433 453 457 478 547

618 653 682 708 718
778 793 822 853 892
907 958 978

1 1 10 25 75 100: 853 863
1 1 10 50 75 100: 793 813 853 978
1 1 5 5 25 100: 813 953
1 1 7 7 50 100: 830
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A Sets Instances % unsolved
1 12017 1046711 8.79%
2 10757 758822 6.37%
3 9059 503409 4.22%
4 6275 196070 1.65%
5 5004 128631 1.08%
6 3507 74137 0.622%
7 2478 48932 0.411%
8 1637 29165 0.245%
9 926 13889 0.117%

10 593 7231 0.0607%
20 294 2706 0.0227%
30 99 443 0.00372%
40 55 311 0.00261%
50 41 225 0.00189%
60 40 221 0.00185%
70 35 206 0.00173%
80 31 166 0.00139%
90 28 130 0.00109%

100 20 77 0.000647%
200 17 62 0.000520%
300 16 55 0.000461%
400 16 54 0.000454%

2000 16 54 0.000454%
3000 15 53 0.000445%
4000 14 52 0.000437%

10000 14 51 0.000428%
20000 13 49 0.000412%
45000 13 49 0.000412%

Table 8: Number of sets having at least one instance not
solved and unsolved instances as a function of A
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Figure 13: x-axis: A (log10 scale), y-axis: number of
unsolved instances (log10 scale)

1 1 8 8 9 9: 662
1 1 9 10 10 100: 478 573 587 598
1 1 9 9 10 100: 867
1 9 9 10 10 100: 867 947 957 958 967

If searching for results in the range 1001–9999 in-
stead of 101-999, the percentage of solvable problems
remains extremely high (at least 99.9705%: only 35200
instances out of 119173757 seem to be unsolvable).
However problems are usually much more difficult for
a human being, as they require using much larger num-
bers. Another interesting proposal to revive the current
countdown game would be to keep on using 6 numbers
drawn in the same pool, but to search now for numbers
in the range 1001-9999 and to allow using the square
operation.

From a theoretical point of view, the main question
is: are there some instances that can never be solved
whatever the value of A?

This question is a complex one and requires further
research: on the one hand, we can hope that by search-
ing with large enough values of A we would solve all
instances of the problem. However, if our search is not
successful, it is pretty much unclear how to demonstrate
that a given instance has no solution. This could indeed
be an example of a simple undecidable problem.

6 A subsidiary problem: reducing
the number of solutions

When looking for a specific number there are often
many different ways to find the result. However, most
of these solutions are “identical” from a human point
of view. There are unfortunately no clear boundary be-
tween “identical” and “different” solutions. There are
some elementary rules that can be used to reduce the
number of solutions, but it is highly improbable that the
filtered solutions would satisfy all fans of the game.

We use postfix notation (A + B will be written
(+AB)) as any computation can be written as a tree and
filtering solutions is therefore nothing more than tree re-
duction. Here are the rules that were used to reduce the
tree:

• if a number appears in the initial set, it must
be used rather than built. For example, if we
have {2, 3, 5, 100}, finding 500 must be done by
(∗ 5 100) and not (∗ (+ 2 3) 100)

• (+ A B) and (+ B A) are identical.
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• (∗ A B) and (∗ B A) are identical. These two

rules have to be checked recursively.

• (∗ A 1) and (/ A 1) are A

• (+ A 0) and (− A 0) are A

• A general reduction rule must be applied to all
subtrees that contain only + and − operations to
put them in a “canonical” form. For example
(+ (+ 1 4) (− 6 (+ 3 2))) must be reduced to
6. The algorithm collects all “positive” numbers
in one list and all “negative” numbers in another
list, then suppress all equal numbers or all com-
binations of numbers equal in both lists, and then
constructs a canonical tree by keeping always the
smallest positive results in the computation.

• The same rule applies to subtrees with only ∗ and
/.

These rules have to be applied until the tree is stable.
The results are presented in figure 14. 833814 prob-
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Figure 14: Number of solutions

lems (7%) have 1 solution, 800633 (6.72%) have 2 so-
lutions, etc. . . The largest number of different solutions
is 232 when the set is {2, 4, 5, 6, 10, 50} and the number
to find is 120.

7 Conclusion
Tu turn the problem into a challenging one for a human
being, this article proposes different solutions which are
easy to use. As the game has been completely solved
for n = 6, both with the standard set of numbers and
with the extended set of all numbers from 1 to 100, it is

easy to pick numbers and target such that the problem is
challenging for a human being, either by choosing prob-
lems which require a minimal number of operations, or
unsolvable problems with the best findable number at
some distance of the target, or using sets having only
prime numbers or large and “unfriendly” numbers. An-
other solution would be to use more than 6 numbers,
and to use a target in a range above 1000, but it is prob-
ably not necessary. The last solution is to change a little
bit the game by adding the square operation. We have
proved that it is possible with only 6 numbers to find the
exact solution for 99.9705% of the problems with the
target in the 1001–9999 range. This is however much
more difficult for a human being, because using the tar-
get is higher, and the square is not a natural operation to
use.

It is more difficult to turn the game into a challenging
problem for a computer. While the classical depth-first
algorithm fails to find a solution in the allotted amount
of time for n > 7, our algorithm solves the problem
with up to 9 numbers in the set. The n = 10 problem
is out of reach for an ordinary computer. It would how-
ever be interesting to start a challenge between com-
puters for n = 10, or n = 11 to see what heuristics
methods are the best for solving this problem. Using
the square operation change fundamentally the prob-
lem from a theoretical point of view, because the game
might be undecidable. Proving the undecidability re-
mains an open challenge, and finding solutions for the
currently unsolved problems (49 instances for the stan-
dard set of numbers and standard target) is still open.
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