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Abstract

This paper shows how genetic algorithms methods
[5, 7] can be used to solve Air Traffic Control conflict-
s. We also compare these methods, in order to vali-
date their solutions, to more classical methods such as
graph search with A* and related algorithms, or simu-
lated annealing. We show that genetic algorithms are
perfectly suited for ATC conflict problems, as they are
able to :

e give many different solutions for a given problem,

e give almost optimal solution in a wvery short
amount of time, with the possibility to enhance
the solution later if more time is available, a crit-
ical property for ATC systems.

AT topic: Genetic Algorithm, Optimization

Domain Area: Air Traffic Control

Status: Operational mock-up.

Effort: 1 man/year

Impact: Optimization of planes trajectories inside
control sectors.

1 Introduction

Since 1980, air traffic is increasing by 10% each
year. The French Air Traffic Control (ATC) system is
faced with slightly different problems than the Amer-
ican one. In the USA, problems are mainly related to
Airport capacities, but in France (and Europe), the
problem is mainly related to En-Route organization
and conflict solving inside sectors'. Different meth-
ods can be taken under consideration: on one hand,
we can try to develop cooperative tools that will en-
hance controllers productivity and keep the man as
the central point of the control system [2]. On the
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1The total airspace is divided into control sectors. For the
purpose of this study we will consider that sectors are cubic area
of 80Nm by 80Nm with an height of approximatively 200000
feet. Two planes in a sector are in conflict if they fly at the
same altitude (same flight level) and their horizontal distance
is equal or less than 8Nm.
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other hand, with the development of Data-Link be-
tween planes and ground based control centers, the
development of GPS and 4D-Flight Management Sys-
tems, a partial or complete automation can seriously
be considered. There are different approaches that
can be undertaken, some based on mainly algorithmic
resolution [3], some others relying on expert system
methods [4], some planning to use both [13]. Works on
these subjects can even require very theoretic work [1]
for the development of such systems.

There are roughly two different levels of resolution
in an ATC system:

e A strategic level which would organize traffic to
minimize the probability of conflicts.

e A tactical level which would solve “in real time”
conflicts as soon as they are detected by trajec-
tory predictions, and would optimize trajectories
for all planes related to the conflict. This system
would act 10 to 15 minutes before the calculat-
ed conflict point inside a square sector of 80Nm
by 80Nm. The system would have to guarantee
that each plane will leave the sector at exactly the
point and at exactly the time scheduled, and that
each and every conflict inside the sector has been
solved. This system will be called the trajectory
planner.

The goal of the work presented here was to try d-
ifferent approaches for doing trajectory planning for
ATC. Trajectory planning has been a classical problem
in robotics for the last years [10], but some specificities
of ATC (all objects are moving, every object trajecto-
ry must be optimized in terms of fuel cost,. ..) prevent
from using directly robotics methods. We decided to
use genetic algorithms as the main method for doing
trajectory optimization?, but also to try to compare
the results given by genetic algorithms to the results
given by classical graph search methods (A4, A* [12]
and related algorithms especially iterative deepening
A* ]9, 14]). This was necessary to validate the opti-
mality of genetic algorithms results.

An other goal of the work was to give an evaluation
of the efficiency of genetic algorithms without devot-
ing too much time to the coding of genetic algorithms
methods themselves: so, we decided to use the classi-

2[19] presents also an application of genetic algorithm for bus
routing.



cal SGA system developed by David Goldberg® [18],
and we tried to concentrate on the modeling of the
problem itself.

2 A simplified model

2.1 Introduction

The first idea was to encode data with the coordi-
nates of the points of each trajectory. Then, there were
three real values (z,y, z) for each point of each plane
trajectory. Two planes are not in conflict if they are al-
ways at a distance of at least 8Nm from each other. So,
to guarantee that two planes are never in conflict, 10
points were required for a 80Nm square sector. Thus,
to solve a two planes conflict in a 80Nm square sector,
we must minimize a function of 3 x 10 x 2 = 60 real
variables. This is definitely out of reach of any genetic
algorithm, even when using more elaborate methods
(such as Dynamic Parameter Encoding [16]). The few
experiments we made confirmed that opinion.

So, the approach to the problem was changed:

e The problem to solve was simplified: each plane
would fly with a constant speed and would not be
able to change its flight level.

e Instead of coding each point of the trajectory, the
actions that a plane could take at each step of the
flight were coded. This data encoding is purely
symbolic and much simpler than a numeric data
encoding for that problem.

To summarize our first model:
e A sector is a 80Nm by 80Nm square;

e cach aircraft is flying with a constant speed (430
knots, or 220 m/s);

e the only possible manceuvre is a change of head-
ing, either 30 degrees left or 30 degrees right;

e an entry point and an exit point in the sector are
associated to each aircraft; all aircrafts enter and
leave the sector at the same time. The exit point
is the point that will be reached at exit time if
each plane is able to fly straight to it without any
heading alteration.

e two planes are in conflict if, at any time, they are
closer than 8Nm.

Of course, it is impossible for a plane to leave the
sector at exactly the time scheduled if its heading has
been modified to solve a conflict, as it is impossible
to accelerate or decelerate planes. So, the term to
optimize for each plane is the distance of the last point
of the computed trajectory to the theoretic exit point.

3We also seriously considered using GA-UCSD [17], but one
of its main advantage, Dynamic Parameter Encoding, is not
directly useful in our example, and its use was slightly more
complex.

2.2 Modeling

When a plane enters the sector at the entry point,
its position and its current heading are known. Then,
the total flying time (approximatively 11 minutes)
over the sector is divided in 16 steps of time (around
40 seconds each). During each of these steps, the plane
flies with a constant speed and with a constant head-
ing. Before each step, the heading of the plane can
be altered, either by turning it left (4+30°) or right
(—30°). As each plane enters and leaves the sector at
the same time, each step has exactly the same length
for every plane.

In that very simple case, there are only three pos-
sibilities for a plane at the beginning of each step:
either keeping the same heading, turning left or turn-
ing right. This can be coded with only two bits: 00
and 01 means that the plane is keeping its heading,
10 means that it is turning 30° right and 11 that it
is turning 30° left. As there are 16 steps, all heading
alterations for one flight over the sector can be coded
with a sequence of 2 X 16 = 32 bits. If there are n
planes in the sector, a sequence of 32n bits is required
to code all heading alterations.

To evaluate the fitness of a sequence of bits that
represents planes trajectories, the following steps are
executed:

e The complete trajectory is computed for each and
every plane, according to its entry point, its ini-
tial heading and the part of the sequence of bits
coding its heading alterations.

e The system checks if there is a conflict between
two (or more planes) according to the trajectories
calculated (i.e. it checks if two planes are ever
closer than 8Nm). If a conflict is found, then the

fitness of the sequence is set to 0%.

e If there is no conflict, the distance d; from the
optimal exit point® to the exit point calculated is
computed for each plane i. The fitness f is then
given by the following formula:

no 2
f — e E,;1 4

There are a few reasons that justify the choice
of that formula for calculating fitness: It is clear
that if the d; are all equal to 0, then the trajecto-
ry is optimal and fitness is equal to 1; it is better
to have three planes 2Nm from their exit point
rather than one 6Nm away, and this justify the
square for d;; the function should also decrease
quite quickly away from the optimum: that’s the

4We tried also a different solution: when a conflict was found,
fitness was divided by 10. This gave sometimes slightly better
results.

5Notice again: the optimal exit point is the point that the
plane would reach if it was flying straight during each and every
step of time. This will not always give a valid trajectory, as
conflicts may occur.
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Figure 1: Figure 2: Resolution with 16 steps and constant speed

exponential function; the value of K must be cor-
rectly chosen to guarantee a correct behavior of
the exponential function : if K is too large, all
values will be closed to 1, if K is too small, all
values will be closed to 0.

2.3 Two planes conflict

As said above, we used the simple, but very easy to
use SGA system developed by David Goldberg.

We first tried to solve a simple problem with only
two planes which are in conflict at the center of the
sector. 400 initial random sequences were generated
of 32 x 2 = 64 bits. The crossing parameter was set to
60%, the mutation parameter to 1% and the system
evolved for 100 generations. After 54 generations in
the first run, the solution represented on figure 1 was
calculated and was not enhanced later on with other
parameters settings. The run was done on a SparcSta-
tion2; it took 30 seconds to complete. In less than 5
seconds a nearly optimal result was computed and was
then slightly enhanced. At the end of the run, there
was in the population 3 different genomes represent-
ing different trajectories which had the same (optimal)
fitness. The trajectory represented on figure 1 is one
of them.

To check these results, we wanted to use an A*
related algorithm with the f and h functions being
our fitness function.

But it was not possible to check the optimality of
the solution with the A* algorithm. The problem was
not a matter of time but a matter of space, even with
32Mb of memory and 128 Mb of swap space: a classical
limitation for A*. We had to use a related algorithm,
close to Iterative Deepening A* that is too complex
to be described here. The solution calculated by this
algorithm is shown in figure 2. This solution is s-
lightly different from the solutions calculated by our
genetic algorithm, but its cost (fitness) is exactly the

same. In that case, the genetic method was optimal
and definitely much faster (3 times faster) without any
optimizations.

2.4 Three planes conflict

The problem with 3 planes, the 3 planes being in
conflict at the same point (a plane crossing the sector
from the lower left corner to the upper right cornerwas
added to the previous example) was also solved. This
is of course the worst possible case for three planes
crossing a sector, as each conflict resolution is con-
strained by each other conflict resolution.

The best results were obtained with 1000 random
sequences, a crossing factor set to 40% and a mutation
factor set to 5%. The same results were computed
with many different parameters setting, but were not
enhanced any more with the simple method used. The
run was done on a SparcStation2 and took 2 minutes.
Here again, a nearly optimal result was calculated in a
very short amount of time and then slightly enhanced.

It was impossible to check out the optimality of
the solution as it was impossible to solve the prob-
lem either in a reasonable amount of time, or with the
memory we had even with iterative deepening. How-
ever, using simulated annealing [20] with a very slow
scheme for decreasing temperature, a slightly better
solution was computed after a considerable amount of
time (see table 1). We think that the solution calcu-
lated by the GA is very close to the optimal solution,
but we were not able to prove it.

The problem for a four planes conflict was also
solved, with the four planes being in conflict at the
same point. This situation is purely theoretic as four
planes conflict never occur in En-Route control, but it
was an interesting test to check the efficiency of GA.
There again, very satisfactory results were obtained in
a short amount of time.



Genetic  Simulated

algorithm  annealing

b1 4.56 3.04
b2 3.04 4.56
b3 5.29 4.55
Quadratic error 7.62 7.13

Table 1: Comparison of genetic algorithm and simu-
lated annealing for three planes conflict

3 A model including speed modifica-
tions

3.1 Introduction

Making a plane climb or descend is very rarely used
to solve a conflict as it is a serious penalty in terms of
fuel cost and passengers comfort. But the possibility
for a plane to accelerate or decelerate had to be in-
cluded in our model to have a more realistic system.
So, we modified our model to include the following:

e planes can increase or decrease their speed by
20m/s at each step.

e speed must stay in the range 170-260m/s (330-
510kts).

In that model, planes should leave the sector at the
time exactly scheduled (each plane being able to accel-
erate and decelerate, it is always able to compensate
trajectory alteration by speed modifications). The ter-
m to optimize for each plane will be fuel cost. We have
considered that, around 220m/s, fuel cost would ap-
proximatively be proportional to the cube of speed,
according to [11].

3.2 Modeling

The simplified model has to be slightly modified to
include speed alterations. At each step, a plane can
change heading and change speed. Speed can either:

e stay stable;
e increase by 20m/s;
e decrease by 20m/s.

2 more bits are used to code speed alterations at each
step: 00 and 01 means that speed is constant, 10 that
speed will increase by 20m/s and 11 that it will de-
crease by 20m/s.

Evaluating the fitness of a sequence is less trivial
than expected. The first step is of course to compute
the complete trajectory along with the speed on each
segment for every plane according to the sequence of
bits and of the initial positions, speed and headings of
each plane.

Then, the simplest idea would be to give a fitness
proportional to fuel cost if all planes reach their des-
tination and a fitness of 0 if any of the planes is either
in conflict or does not reach its destination. However,
this simple evaluation does not work correctly. Too
many sequences have a fitness evaluated to 0, espe-
cially at the beginning of search, as random sequences
do not give trajectories with planes reaching their des-
tination. Under those conditions, a genetic algorithm
does not behave properly. Then a slightly different
function was used for evaluating fitness:

C

Fm e D T+

The signification of the variables are:

e d; is, for plane 4, the distance from the plane des-
tination to the last computed point of the trajec-
tory according to the sequence of bits.

e C; is the fuel cost over the computed trajectory
for plane <.

e K; and K5 are constants.

Some of the justifications given for the function
used for our simpler model apply also here. In ad-
dition, this function is designed to correctly balance :

1. fuel cost
2. distance to the optimal exit point (destination)

The function gives distance a higher power than fuel
cost. Thus, the GA is coerced to select first trajecto-
ries that satisfy the most important criterion: being
very close to the optimal exit point. Then, for planes
having similar or almost similar distance cost, fuel cost
makes the difference and the solution that has been
calculated in the first stage is later enhanced and fuel
cost is drastically reduced.

3.3 Results

Figure 3 and figure 4 show results after a run of 100
generations with an initial population of 400 strings
and parameters set to 40% for inter-crossing and 5%
for mutations. Full details in respect to the evolution
of the optimality of the solution in terms of distance
reduction and fuel cost reduction are available in [6]°,
but the GA performed exactly as expected: after op-
timizing distance, it then optimized fuel cost.

The same results were obtained with other param-
eter settings but it was not possible to enhance them.
The solution was found in 1 minute on a SPARC2.
The solutions found after the 10 first seconds were
distance optimal, but not fuel cost optimal. However,
after 20 seconds, a nearly optimal solution was com-
puted and was only slightly enhanced later.

These results are definitely good, but we would have
liked to check their optimality with a complete and

6This report is available by anonymous ftp on
gogol.cenatls.cena.dgac.fr (143.196.1.6).
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exact search. Here again, we wanted to use an A*
related algorithm with the h function being our fitness
function.

It was impossible to optimize enough our A*-related
algorithm to get the exact solution. It was necessary
to use fewer steps in the resolution. Instead of 16
steps, it was only possible to use 8 steps. This was
definitely two few to be able to compare. In fact, with
8 steps, separation of planes can not even be guaran-
teed: as we check for separation only before and after
each step, two planes flying in opposite direction can
cross each over in a step, generating a conflict that
would remain unnoticed by the system.

So, instead of using an A* algorithm, we used an A
algorithm by multiplying the A function by 1.1 This
guarantees that the cost of the solution we will find
with this A algorithm will not be worst than 1.1 times
the optimal solution cost. However, even with this
method, it was impossible to have a solution with 16
steps and we had to to fall back to 11 steps. Thus, it
is not longer possible to compare exactly the results
given by the GA and the A algorithm, as there are not
the same number of steps.

However, it is instructive to compare trajectories
and speed modifications. Results of the A algorithm,
with a maximal error of 10% and 11 steps, are shown
on figure 5 and figure 6. They exhibit very similar
shape for the trajectories, and very similar behaviors
for speed alterations.

4 Discussion and future developments

In this study, we have demonstrated that genetic
algorithms can be of interest for ATC. There are two
interesting points in GA resolution methods:
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e Compared to classical graph search such as A*
which can take a very long time to compute a
solution, GA are able to calculate in a few seconds
a good solution, with the possibility to let the
GA enhance thus result later on if more time is
available. This is very important for ATC systems
which are real time systems and need solutions in
a limited amount of time, even if these solutions
are not optimal.

e Compared to simulated annealing which gives on-
ly one solution, a population of strings holds
many different strings close to the better solution
found. This is also interesting for an ATC systems
where a human supervisor will always be present
to optimize and organize the solutions comput-
ed by the automated system. Giving a panel of
choices to the supervisor is a definite advantage
over simulated annealing technics which give only
one solution.

We have already began to include some technical
improvements:

e The initial population should not be random tra-
jectories, but trajectories already close to the so-
lution. It is clear that a straight line from the
entry point in the sector to the exit point, for
each plane, is always quite close to the solution.
If we add a Gaussian noise to the string coding
these trajectories, we will certainly have a much
better initial population for solving conflicts.

e We will modify standard crossing and mutation
operators to include some knowledge of ATC, in-
stead of doing “blind” crossing and “blind” mu-
tations. A very simple example: it is currently
meaningless to cross strings at odd positions as
every action is coded with two bits.

e We will change the selection process to include
a mechanism based on elitist selection, to keep
in the set of strings some elements which code
optimal trajectory for each plane.

We will also try a new kind of coding, which will not
code the trajectories with bits, but directly in terms
of linked lists of points, as suggested by Marc Schoe-
nauer [15]: crossing two strings is just cutting two
linked lists at the same position and connecting the
two part, as we would do for two strings of bits. A
mutation becomes adding Gaussian noise to one point
of a list, etc...

From an ATC point of view, we are also planning
to include some improvements, mainly for calculating
trajectories and fuel cost, using an operational simula-
tor [8] instead of rough approximations. We will also
try to enhance the set of available maceuvres to have
a more realistic resolution system that could be tested
during real time simulations.

The results of the study were considered promising
by this contracting party: the grant has been renewed
for one more year and a person from the CENA7 will
work full time on this project with us to enhance ATC
parts.

7"The CENA is the state organism in charge of the design of
the future French ATC system.
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