Optimisation globale non déterministe

Recuit simulé et algorithmes évolutionnaires

Optimisation stochastique

- #Méthodes d'optimisation qui ne requièrent pas de régularité sur les fonctions à optimiser
- #Méthodes couteuses en temps de calcul qui ne garantissent pas de trouver l'optimum.
- ****Les résultats de convergence ne s'appliquent pas en pratique.**

Le recuit simulé

- \mathbb{H} Initialisation: on part d'un point x_0 choisi au hasard dans l'espace de recherche.
 - \triangle On construit $x_{n+1} = x_n + B(0,s)$
 - \bigcirc On fait évoluer la température de recuit: $t_{n+1}=H(t_n)$
 - \triangle Si $f(x_{n+1}) < f(x_n)$ alors on conserve x_{n+1}
 - \triangle Si $f(x_{n+1}) > f(x_n)$ alors :
 - \boxtimes Si $|f(x_{n+1})-f(x_n)| < e^{-kt}$ alors on conserve x_{n+1}
 - \boxtimes Si $|f(x_{n+1})-f(x_n)|>e^{-kt}$ alors on conserve x_n

Paramètres importants

- **%**Le schéma de recuit H détermine la façon dont l'algorithme converge.
 - Trop rapide=>L'algorithme converge vers un minimum local
 - ☐ Trop lent = >L'algorithme converge trop lentement.
- **%**Le déplacement B(0,s) doit balayer suffisamment l'espace sans trop déplacer le point.

Efficacité

- ****Les algorithmes de recuit sont utiles sur des problèmes trop difficiles pour les techniques déterministes.**
- #On leur préfèrera des algorithmes de type génétique quand on peut construire des croisements qui ont un « sens ».

Algorithmes génétiques

- #Techniques d'optimisation s'appuyant sur des techniques dérivées de la génétique et de l'évolution naturelle:
 - Reproduction
 - Croisement
 - Mutation
- #Apparus aux Etats-Unis dans les années 60 à travers les travaux de John Holland
- **#Popularisés par David Goldberg.**

Codage d'un élément et création de population

- **Soit** x, variable de la fonction f(x) à optimiser sur $[x_{min}, x_{max}]$.
- $\Re On \ réécrit \ x : 2^n (x-x_{min})/(x_{max}-x_{min})$
- **#**On obtient alors un nombre compris dans l'intervalle [0,2ⁿ], soit une chaine de n bits:
 - Pour n=8: 01001110
 - Pour n=16: 0100010111010010
- ****On tire n éléments au hasard et les code comme ci-dessus.**

Croisement

```
#On choisit deux parents :
  <u>№</u>01100111
  <u>№</u>10010111
#On tire au sort un site de croisement (3):
  <u>△</u>100|10111
#On récupère les deux enfants:
  △100|00111
```

Mutation

- **#On sélectionne un élément:**
 - <u>△</u>01101110
- **#**On sélectionne un site de mutation (5):
 - <u>№</u>01101110
- **#On inverse la valeur du bit:**
 - <u>№</u>01100110

Reproduction

- \Re Pour chaque élément x_i on calcule $rac{\triangle} f(x_i)$ et $S=Σ(f(x_i))$
- #Pour chaque x_i on calcule $\triangle p(x_i) = f(x_i)/\Sigma(f(x_i))$
- **#**On retire les n éléments de la population k+1 à partir des n éléments de la population k en prenant comme probabilité de tirage p(x_i)

Exemple de reproduction

#Soit f(x)=4x(1-x)#x prend ses valeurs dans [0,1[

Séquence	Valeur	U(x)	% de chance	% cumulés	Après
			de reproduction		reproduction
10111010	0.7265625	0.794678	0.794678 / 2.595947 = 0.31	0.31	11011110
11011110	0.8671875	0.460693	0.460693 / 2.595947 = 0.18	0.31+0.18=0.49	10111010
00011010	0.1015625	0.364990	0.364990 / 2.595947 = 0.14	0.49+0.14=0.63	01101100
01101100	0.4218750	0.975586	0.975586 / 2.595947 = 0.37	0.62+0.37=1.00	01101100
=		2.595947			

Fonctionnement d'un AG

- **#Etape 1: reproduction**
- #Etape 2: croisement
- #Etape 3: mutation

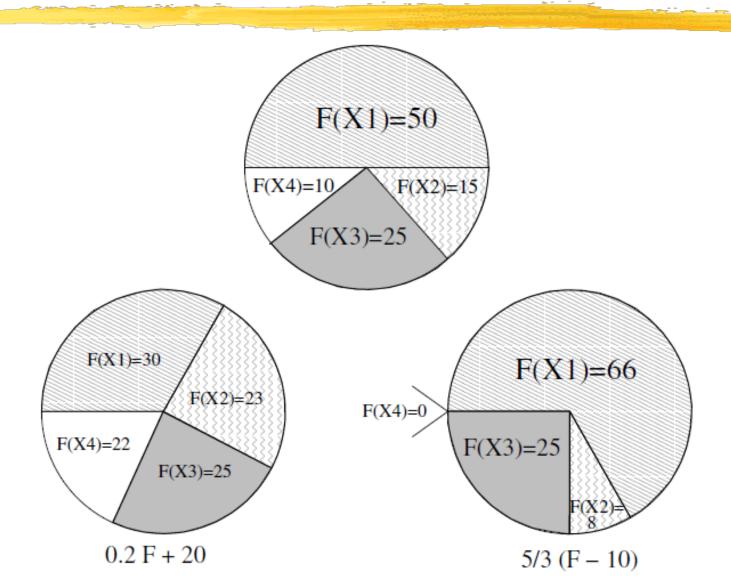
Le scaling

- Le fonctionnement de l'algorithme dépend fortement de la valeur de l'adaptation.
- #Au lieu d'utiliser directement f(x) comme adaptation, on la « met à l'échelle » en appliquant une fonction croissante.

#Exemples:

- \triangle 5 (f(x)-10)/3: augmente la pression
- 0.2 f + 20 : diminue la pression

Exemple de scaling



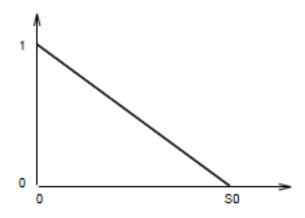
Le sharing

- **%**La pression de sélection peut entrainer une convergence locale trop rapide.
- **Le sharing modifie l'adaptation en fonction du nombre d'éléments voisins de l'élément courant:
 - $\triangle f_s(x_i) = f(x_i)/\Sigma_j s(d(x_i,x_j))$
 - s est une fonction décroissante.
 - $\triangle d(x_i,x_i)$ mesure la distance entre i et j

Le sharing

****Le sharing demande la mise en place** d'une fonction distance sur l'espace des variables.

#Forme générale de s:



Problème du codage en chaine de bit

- Deux éléments très différents au niveau du génotype peuvent avoir des phénotypes identiques.
 - Sur un codage simple de [0,1] en 8 bits:
 - △10000000 et 01111111 représentent quasiment la même valeur (1/2) mais leur distance de Hamming est maximale.
 - On peut utiliser des codes de Grey, ou employer des représentations adaptées.

Représentation adaptée

#Pour les fonctions à variable réelle, on code directement la variable par sa valeur

#Croisement:

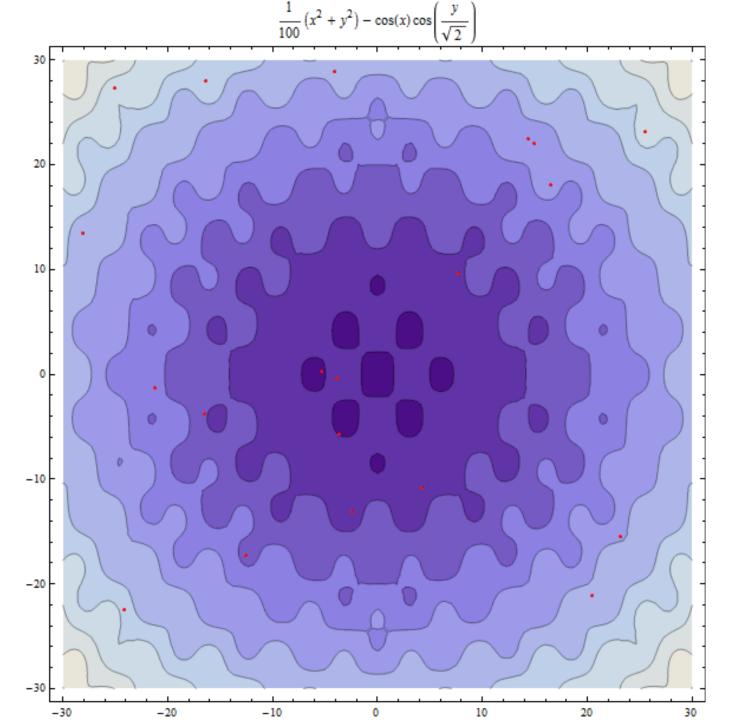
$$y_1 = \alpha x_1 + (1-\alpha) x_2$$

$$y_2 = (1-\alpha) x_1 + \alpha x_2$$

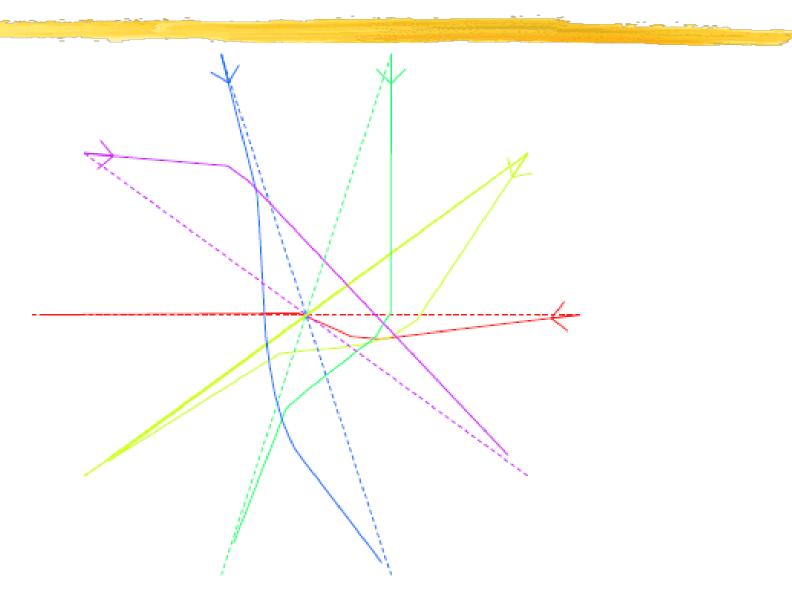
 $\triangle \alpha$ pris dans [0.5,1.5]

#Mutation:

$$\triangle y_1 = x_1 + B(0, \sigma)$$

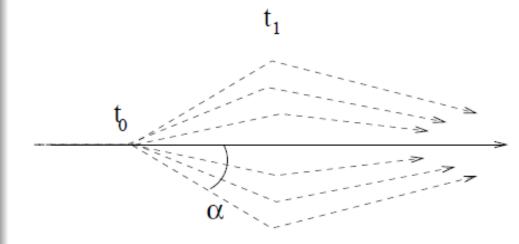


Résolution de conflits aériens



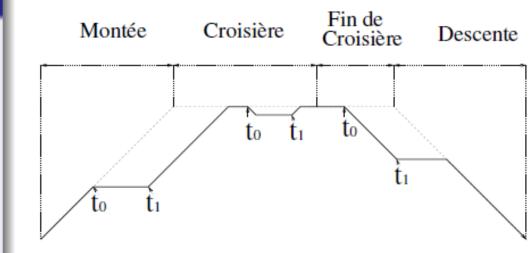
Modélisation

- Une seule manœuvre par avion
- Manoeuvres horizontales
- Manoeuvres verticales
- Modélisation de l'incertitude
- 3n variables



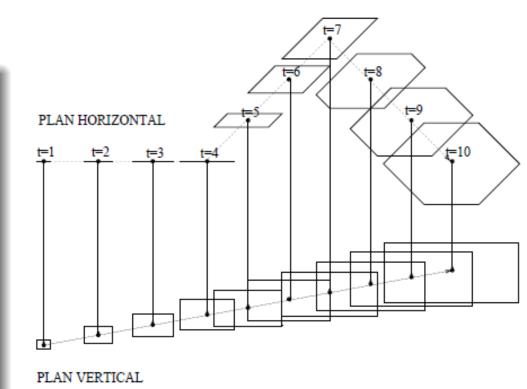
Modélisation

- Une seule manœuvre par avion
- Manoeuvres horizontales
- Manoeuvres verticales
- Modélisation de l'incertitude
- 3*n* variables



Modélisation

- Une seule manœuvre par avion
- Manoeuvres horizontales
- Manoeuvres verticales
- Modélisation de l'incertitude
- 3n variables



Modélisation

- Une seule manœuvre par avion
- Manoeuvres horizontales
- Manoeuvres verticales
- Modélisation de l'incertitude
- 3n variables

avion 1 t_0 t_1 α avion 2 t_0 t_1 α t_0 t_1 α

to

t1

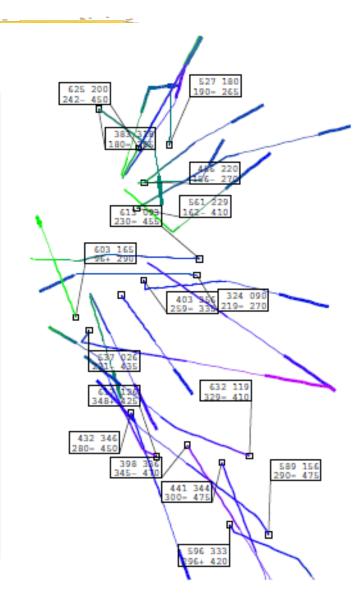
 α

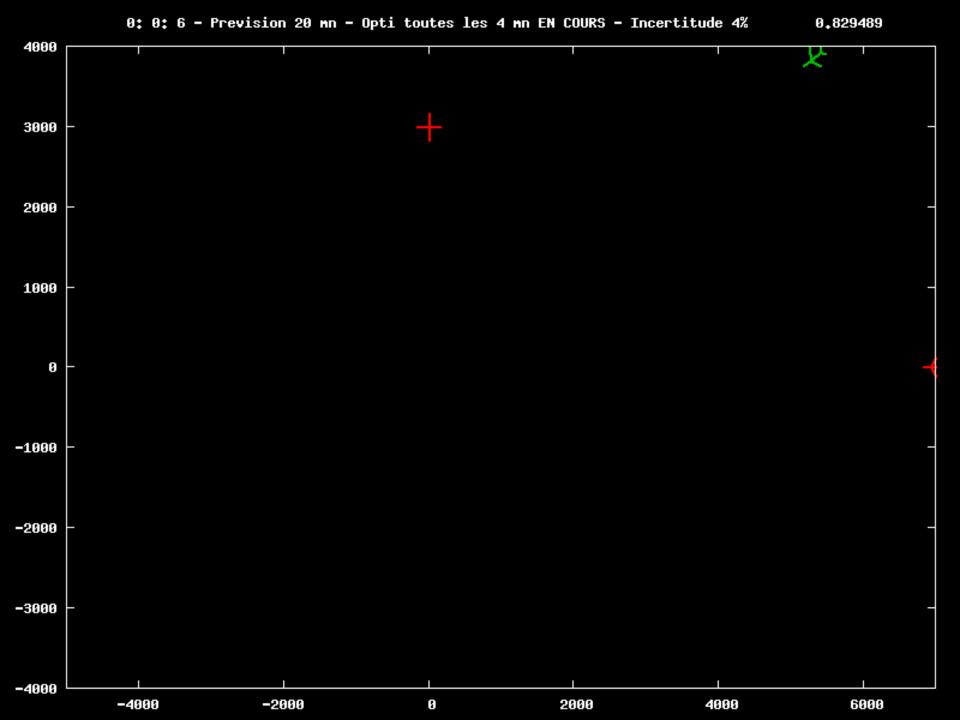
avion n

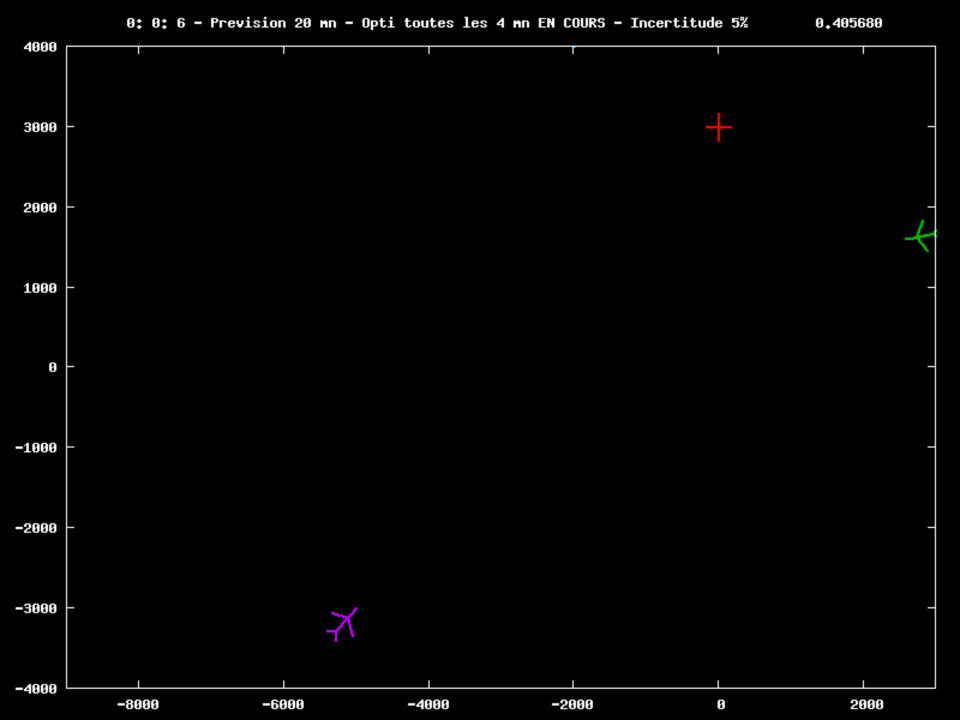
Résultats

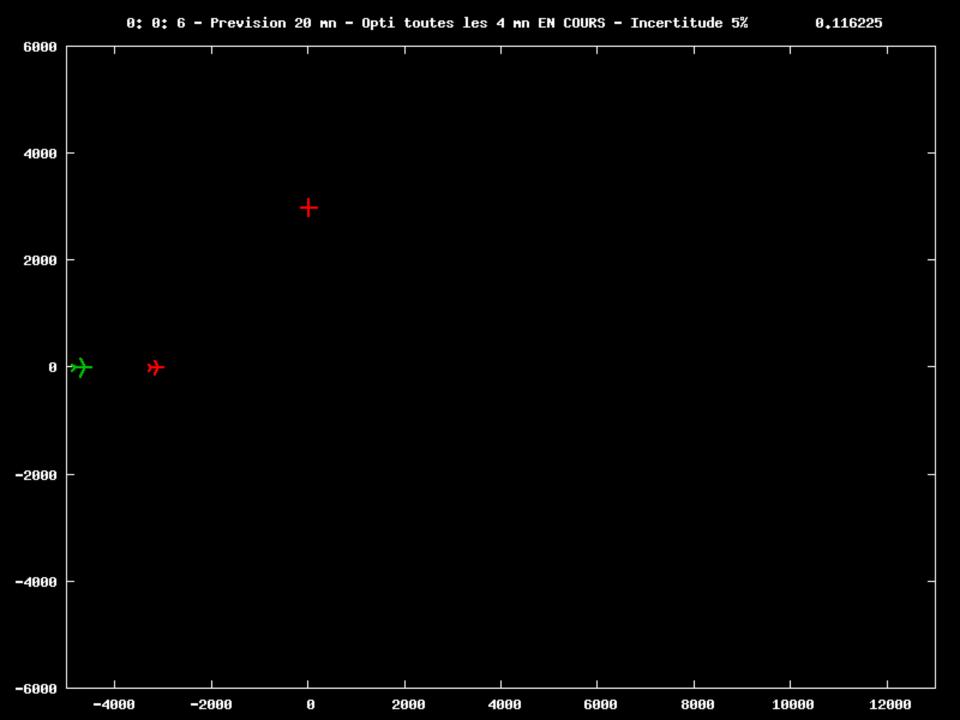
Résultats

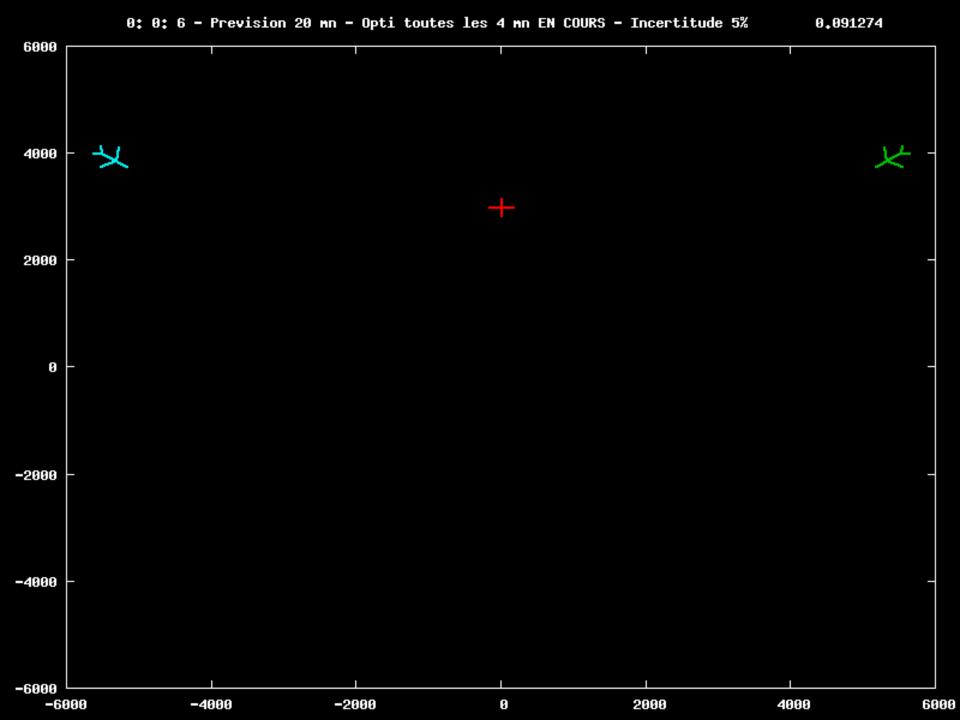
- Résout des gros conflits (30 avions)
- Intégration dans un outil de simulation (CATS/OPAS)
- Testé sur des journées de trafic réel
- Peu de restrictions sur la modélisation
- Pas de garantie d'optimalité

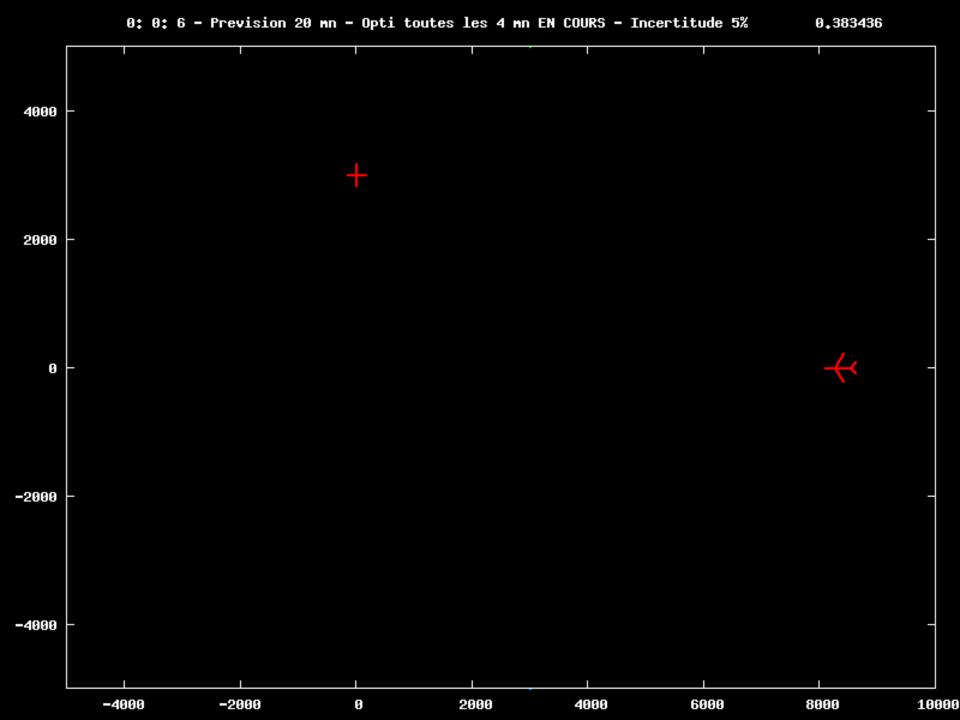


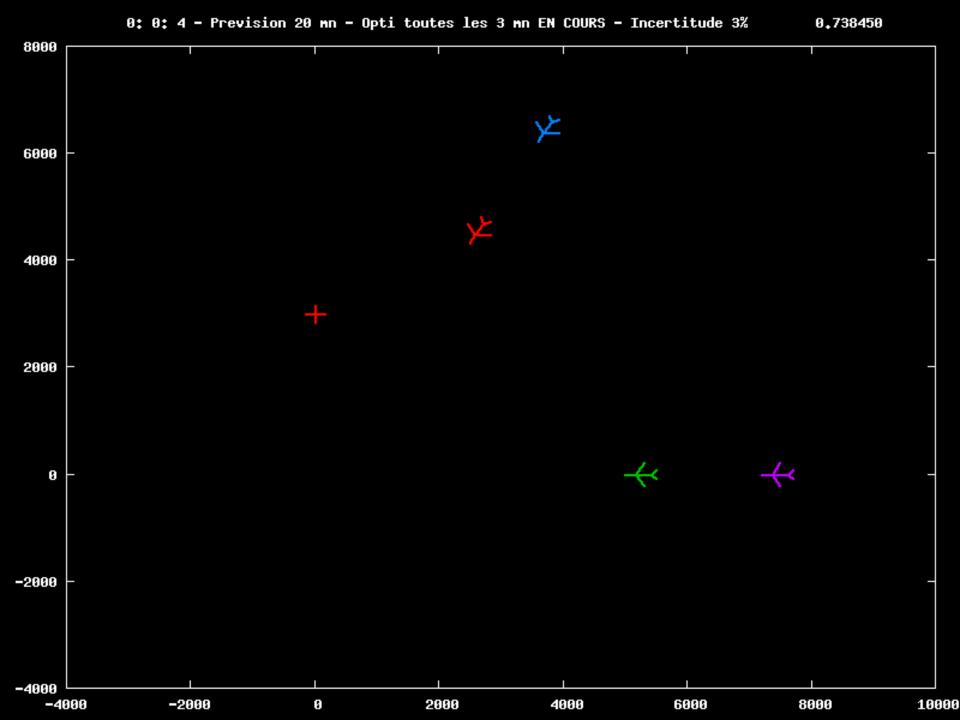




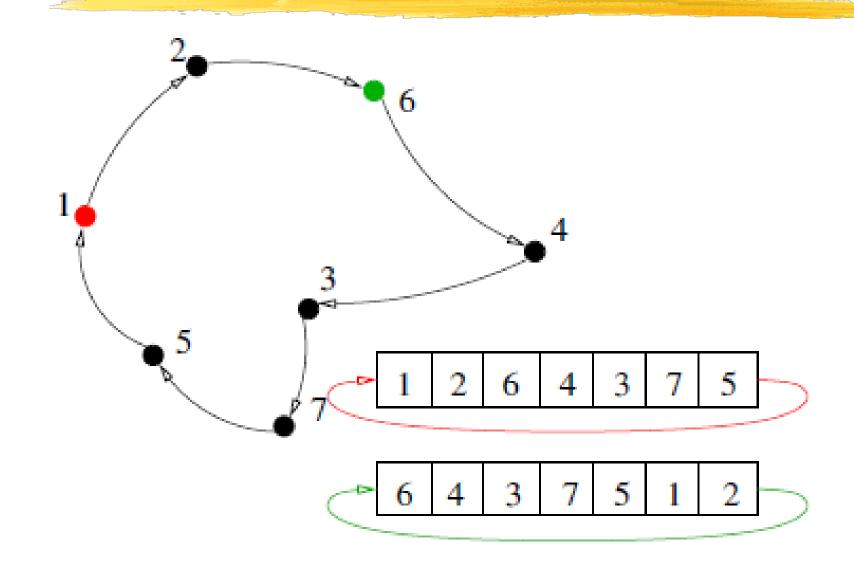




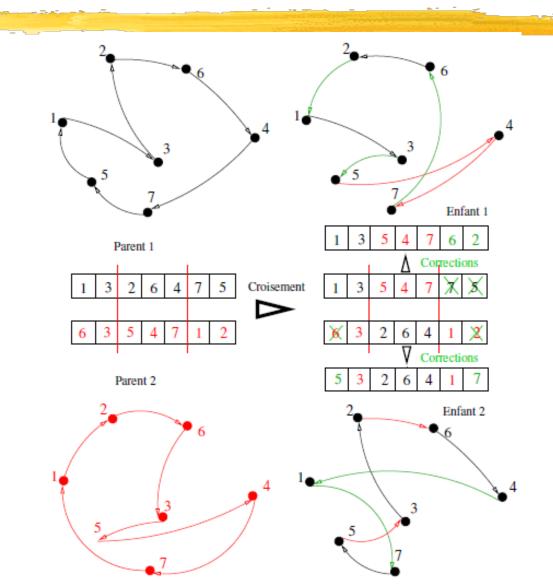




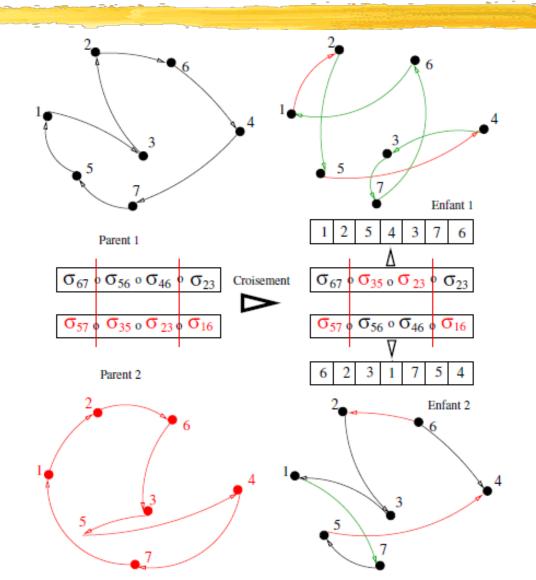
Le voyageur de commerce



Le voyageur de commerce: croisement



Nouveau croisement



Voyageur de commerce: mutation

