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Abstract

A general probabilistic model of the gene structural and compositional properties of
human genomic DNA is introduced and applied to the problem of identitying genes
in unannotated human genomic sequences. The model uses a “Hidden semi-Markov”
or semi-Markov source architecture which incorporates probabilistic descriptions of
fundamental transcriptional, translational and splicing signals, as well as length distri-
butions and compositional features of exons, introns and intergenic regions. Distinct
sets of model parameters are derived which account for many of the substantial differ-
ences in gene density and structure observed in distinct C4+G compositional regions
(“isochores”) of the human genome. A novel model building procedure, termed Max-
imal Dependence Decomposition, is introduced which captures potentially important
dependencies between non-adjacent as well as adjacent positions in a biological signal.
Application of this model to the donor splice signal not only gives better discrimina-
tion of potential donor sites than previous probabilistic models, but also reveals subtle
properties of this signal which suggest aspects of its biochemical function. Acceptor
splice signals are modeled using a “windowed” version of the previously developed
“weight array model”, which is also shown to give significant improvements in dis-
criminative power. Development of a computer program, GENSCAN, which identifies
complete exon/intron structures of genes in genomic DNA is described. Novel features
of the program include the capacity to predict multiple genes in a sequence, to handle
partial as well as complete genes, and to identify consistent sets of genes occurring
on either or both DNA strands. The program is also capable of indicating with high
accuracy the reliability of each predicted exon. The accuracy of GENSCAN is shown

to be substantially better than existing methods when tested on standardized sets of
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human and vertebrate genes, with 75 to 80% of exons identified exactly. Consistently
high levels of accuracy are observed for sequences of differing C+G content, for pri-
mates, rodents and non-mammalian vertebrates, and accuracy is only slightly lower
for Drosophila and maize sequences. Applications of the program to finding genes in
newly sequenced genomic regions and to prediction of alternatively spliced regions of

genes are discussed, with examples of each.
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Chapter 1

INTRODUCTION

In recent years, development of the technology for efficient, automated DNA sequenc-
ing has led to the accumulation of large databases of DNA and protein sequences, and
a new field of study known variously as “computational molecular biology”, “mathe-
matical biology” or “bioinformatics” has begun to take shape as researchers work to
interpret and draw conclusions from this wealth of new information. Though difficult
to define precisely, the field might be described as the area of research at the inter-
section of molecular biology, molecular evolution and structural biology which seeks
to understand the relationships between sequence, structure, evolution and biological
function by statistical/computational analysis of molecular sequences. Some of the
goals of research in this area include: (i) prediction of protein structure (secondary
and/or tertiary) from the primary amino acid sequence; (ii) detection of regulatory
signals (promoters, enhancers, origins of replication, etc.) in genomic DNA sequences;
and (iii) inferring evolutionary history from comparison of homologous gene or protein
sequences (or genomes).

This thesis addresses another significant open problem in this field, namely identi-
fication of the precise exon-intron structures of genes in higher eukaryotic (especially
human) genomic DNA sequences. The problem has a certain intrinsic interest in that
it challenges us to define precisely the sequence dependence of the basic biochemical
processes of transcription, translation and RNA splicing, and studies of the sequence

properties of known genes may yield clues about the mechanisms of these processes.
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On the other hand, with the recent shift in the emphasis of the Human Genome
Project from physical mapping to intensive sequencing, the problem has taken on sig-
nificant practical importance. Indeed, efficient and reliable means of gene detection
will be required if the stated goal of identification of all human genes (Watson, 1992)
is to be achieved in a timely fashion. The approach taken here is to develop a proba-
bilistic model of gene structure based on studies of properties of known human genes.
This model is then applied to the problem of gene identification in a computer pro-
gram called GENSCAN. The work described is essentially interdisciplinary in nature
in that, while the basic subject matter is biological and results of biological interest
are obtained, techniques from other fields are used fairly heavily, including certain
discrete stochastic models from statistics and dynamic programming algorithms used

primarily in electrical engineering applications.

1.1 Background

A large body of literature on the subject of gene prediction has accumulated in the
past fifteen years or so. Early studies by Shepherd (1981), Fickett (1982), and Staden
& McLachlan (1982) showed that statistical measures related to biases in amino acid
and codon usage could be used to approximately identify protein coding regions in
genomic sequences. Since then, numerous other compositional differences between
coding and non-coding DNA sequences have been noted, including differences in
general k-tuple (oligonucleotide) frequencies (e.g., Claverie & Bougueleret, 1986),
measures of autocorrelation (Michel, 1986), Fourier spectra (Silverman & Linsker,
1986), purine/pyrimidine periodicity (Arques & Michel, 1990), and local composi-
tional complexity/entropy (Konopka & Owens, 1990). Based on these differences,
the first generation of gene prediction programs, designed to identify approximate
locations of coding regions in genomic DNA were developed. The most widely known
such programs are probably TestCode, based on Fickett’s (1982) work, and GRAIL
(Uberbacher & Mural, 1991), which uses a neural network approach to integrate mul-
tiple types of content statistics in order to classify sequence windows as coding or

non-coding. These methods are generally able to identify coding regions of sufficient



CHAPTER 1. INTRODUCTION 3

length, i.e. at least one or two hundred nucleotides, with fairly high reliability, but
do not accurately predict precise exon locations.

In order to more accurately pinpoint exon boundaries, two subsequent generations
of algorithms have been developed. Second generation methods, such as SORFIND
(Hutchinson & Hayden, 1992), GRAIL II (Xu et al., 1994a), and Xpound (Thomas
& Skolnick, 1994), use a combination of splice signal and coding region identification
techniques to predict “spliceable open reading frames” (potential exons), but do not
attempt to assemble predicted exons into complete genes. Third generation methods
attempt the more difficult task of predicting complete gene structures, i.e. sets of exons
which can be assembled into translatable mRNA sequences. The earliest examples
of such integrated gene finding algorithms were probably the gm program (Fields &
Soderlund, 1990) for prediction of genes in Caenorhabditis elegans and the method of
Gelfand (1990) for mammalian sequences. Subsequently, there has been a mini-boom
of interest in development of such methods, and a wide variety of programs have
appeared, including (but not limited to): GenelD (Guigé et al., 1992), which uses a
hierarchical rule based system to rank potential exons; GeneParser (Snyder & Stormo,
1993, 1995), which uses a combination of neural network and dynamic programming
approaches; GenLang (Dong & Searls, 1994), which treats the problem by linguistic
methods; FGENEH (Solovyev et al., 1994), which uses discriminant analysis and
other statistical techniques; and GAP III (Xu et al., 1994b), which uses dynamic
programming to assemble gene models from clusters of potential exons predicted by
GRAIL II.

The sheer number of such algorithms raises the obvious question of whether the
gene finding problem has perhaps already been solved by one or more of these pro-
grams. This question was definitively answered in the negative by a recent system-
atic comparison of available integrated gene finding methods undertaken by Burset
& Guigd (1996). Despite the considerable effort which has been lavished on this
problem, the authors concluded that the predictive accuracy of all such methods re-
mains rather low, with most programs identifying less than 50% of exons on average
when tested on a standard set of 570 vertebrate multi-exon genes. Another signifi-

cant shortcoming of existing integrated gene finding methods is that, in general, the
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assumption is made that the input sequence contains exactly one complete gene. As
a consequence, when presented with a sequence containing multiple genes or a partial
gene, some of the predicted exons may be correct, but the assembled gene structure
typically does not make sense. This and other limitations of existing methods are

discussed in a recent review by Fickett (1996).

1.2 Goals

My primary goal was to develop a fourth generation method of gene identification,
which would be capable of predicting the number of genes in a sequence as well as the
locations of coding exons, and would be sufficiently general so as to include partial as
well as complete genes and genes occurring on either or both DNA strands. At the
outset, one can imagine two opposing schools of thought on the issue of gene modeling.
First, there is the “pragmatic” or “heuristic” viewpoint: that one should combine all
known discriminatory properties of introns, exons, etc. into some sort of composite
function for prediction, weighting each property by an appropriate factor derived by
trial and error or perhaps by some statistical or machine learning procedure. This
approach has been by far the most popular to date, as exemplified by programs like
GRAIL (II) and GeneParser, which combine multiple types of content statistics in
complicated multi-layer neural networks which bear little resemblance to anything
that might be happening in the cell. On the other hand, there is what could be called
the “biochemical” viewpoint: that one should construct a model which mimics in
stlico (on the computer) the underlying processes of transcription, RNA splicing and
translation which define genes in vivo. Aside from the usefulness of the predictions,
one might also hope to gain some insight into these processes from such an approach.
Unfortunately, a biochemical approach does not yet appear feasible, owing to the
extreme complexity of eukaryotic transcription and RNA splicing mechanisms and
our currently incomplete understanding of these processes. To my knowledge, no
serious attempts have yet been made in this direction: such an undertaking may have
to be postponed for at least a few more years.

I decided to take an intermediate path between these two extremes, adopting
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what might be called the “probabilistic” viewpoint. Specifically, the model should be
a probabilistic description of a gene, in terms of both structural and compositional
properties, which should incorporate statistical descriptions of the signals known to
be recognized by the general transcriptional, translational and splicing machinery.
Thus, the model should attempt to capture the sequence constraints imposed by
these biochemical processes but should not attempt to model the processes them-
selves. Furthermore, the model should be flexible enough so that, as new information
is learned about the signals involved in transcription and splicing, improved signal
models can be developed and integrated into the existing framework. In addition to
the obvious goal of improving predictive accuracy, several additional model properties

were considered desireable.

1) All model parameters should be explicit (i.e. no hidden neural network weights),
have simple intuitive interpretations, and be estimable from available sets of

known human genes.

2) The model should be computationally tractable in the sense that the most likely
gene structure or set of structures should be calculable in a reasonable amount

of time, say not more than a few minutes for sequences up to 100 kilobases.

3) The model should be capable of assigning a measure of reliability to each pre-
dicted exon (or gene) so that, for instance, PCR primers could be designed

based on the portions of the prediction which are most certain.
4) The method should be robust with respect to the C+G content of the sequence.’

5) Ideally, the method should be capable of predicting whether or not a gene is
alternatively spliced and, if so, should predict the exon/intron structure of each

alternatively spliced product.

6) The method should be capable of finding new genes as well as genes which are

homologous to known proteins.

TMost available methods perform less well on A+T rich sequences.
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The reasoning behind the last goal was that, since several homology-based gene find-
ing methods already exist, e.g., BLASTX (Gish & States, 1993), GenelD+ (Guigé
& Knudsen, unpublished), GeneParser3 (Snyder & Stormo, 1995) and Procrustes
(Gelfand et al., 1996), and such methods often work quite well provided that a suffi-
ciently close homolog exists, the really important practical problem is to identify truly
novel genes not substantially similar to existing proteins in the databases. Finally, it
was decided to work primarily with human sequences, since far more sequence data
is available for human than for other higher eukaryotes and because the gene finding
problem is notoriously difficult in human genomic DNA.

Many of the goals listed above have been achieved in whole or in part by the current
implementation of the GENSCAN program, which is based on a semi-Markov source
model of gene structure. The model incorporates several types of features, includ-
ing splice signal models, exon length distributions, promoter and poly-adenylation
signals, etc. of presumed importance for gene function, and accounts for many of
the substantial differences in gene density and structure (e.g., intron length) that
exist between distinct C+G compositional regions of the human genome. The pre-
dictive accuracy of GENSCAN, in particular, is significantly higher than existing
methods when tested on standard sets of human and vertebrate gene sequences, and
the program is able to exactly reconstruct complex multi-exon gene structures in a
substantial proportion of cases. The program is also able to give useful estimates
of the reliability of its own predictions, enabling the user to choose predicted exons
with any desired degree of certainty. In addition, accuracy is consistently high for
sequences of differing C4+G content. Finally, in some cases at least, suboptimal ex-
ons indicated by the program correspond to alternatively spliced variants of a gene.
However, certain features remain difficult to predict including very small exons and
exact promoter locations: further improvements in this area will have to be left to

the next generation of algorithms.
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1.3 Organization

This thesis develops a probabilistic model of gene structure and sequence: the chapters
were organized so as to describe the model from its most general structure to its most
specific details.? Thus, Chapter 2 covers the overall architecture of the model and (the
closely related subject of) the algorithms needed to make its use practical. Chapter 3
discusses how the general structural and compositional features of human genes are
represented in the model and Chapter 4 describes the particular models of biological
signals which were developed, focusing mostly on the acceptor/branch point and
donor splice signals. Finally, Chapter 5 covers the specific implementation of the
GENSCAN program and how it was tested and gives specific examples of its use.
The last chapter briefly reviews some of the unique or unusual features of GENSCAN
relative to existing programs and outlines some potential applications of the model
architecture to areas beyond gene finding.

A point which should be made at the outset is that, for concreteness, one particular
model architecture is described, as if GENSCAN were conceived and implemented in
exactly its current form, whereas in reality the model evolved over time and many
variations were explored before the final form was decided upon. Thus, in some
cases, particular features of the model are described but not fully justified relative to
reasonable alternatives because to do so in every case would soon become tedious. In
other words, some of the approaches which were tried but failed to improve prediction
are not described. Finally, concreteness was desired in order that this thesis would
provide a record of the performance of a particular precise model specification at a
particular point in time so that further developments in the field of gene identification
could be compared to this benchmark. A paper describing the essential features of
GENSCAN which overlaps with many areas of this thesis was recently accepted for
publication (Burge & Karlin, 1997): further references to this paper are not given

since otherwise they would be too numerous.

2Though there are several advantages to this organization, there is also the unfortunate disad-
vantage that some of the most technically difficult sections occur in the second chapter, specifically
Sections 2.5 — 2.10. Therefore, some readers may find it more convenient to read these sections after
Chapters 3 and 4.



Chapter 2

MODEL ARCHITECTURE AND
ALGORITHMS

In this chapter, a probabilistic model of gene structure is introduced and the algo-
rithms necessary for practical use of the model in prediction are developed. The
model relies on several standard types of discrete stochastic models! which are briefly
reviewed in Section 2.1. In Sections 2.2 to 2.5, a basic framework for gene modeling
is described, and some of the strengths and limitations of the model structure are
addressed. Section 2.6 discusses the serious combinatorial problems involved in iden-
tifying complex multi-gene structures in long genomic DNA sequences, and addresses
some of the related algorithmic issues. In Sections 2.7 to 2.9, three fundamental
algorithms are described which allow efficient determination of the most likely gene
structure(s) in a sequence and other quantities of interest. Finally, Section 2.10 gives
an explicit example of some of the calculations involved in the optimization (Viterbi)
algorithm, which helps to provide insight into how each of the model components

contributes to prediction.

LA good general reference is Karlin & Taylor (1975)
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2.1 Discrete stochastic processes

Consider a discrete time stochastic process (sequence of random variables), X7, X5, ...
which takes on values from a finite state space A = {A;, As, ..., Ay}. If the probability
of transition from state A; at time n to state A; at time n + 1 depends only on A;
and not on the previous history of the process, then the process is said to have the
Markov property or to be a Markov Model (MM) or Markov chain. The basic theory
of Markov processes is described in Howard (1971a) and elsewhere (e.g., Freedman,
1983). If the transition probabilities depend only on 7 and j and not on the time,
n, the process is said to be (temporally) stationary or (time) homogeneous. Such
a stationary Markov process can be described by an N x N transition matrix, 7T,
with entries T;; = P{X,41 = A;|X, = A;}. In general, for a Markov process the
probability T;; of returning to the same state in the next time interval may be non-
zero. If the transition probabilities depend on n, the process is said to be (temporally)
inhomogeneous. A particular case of interest here is when the transition probabilities
depend only on n modulo m (i.e. the remainder when n is divided by the positive
integer m): such a process is referred to here as an m-periodic Markov chain. If
instead of depending only on the previous state, the process depends on the previous
k states, the process is referred to as a kth-order Markov chain.

A Semi-Markov Model (SMM) is a stochastic process whose successive state occu-
pancies are governed by a Markov transition matrix (with the restriction that 7;; = 0
for all ¢), but where the duration of time spent in each state is a (positive) inte-
ger valued random variable described by a separate probability distribution 7; which
depends on the state type A; (or, in some cases, on A;;; as well). The theory of
semi-Markov processes is described in Howard (1971b). For a Markov process, by
contrast, each state is occupied for only a single time unit. The SMM is strictly more
general than the MM in the sense that any MM can be represented as an SMM with
geometrically distributed state lengths (actually, 1-shifted geometric — see below).
The geometric distribution is the discrete analog of the well-known exponential dis-
tribution and is described by a single parameter, ¢. A random variable X is said to

have geometric distribution with parameter ¢ if P{\ = k} = (1 —q)*q for k =0,1,...,
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corresponding to the probability of k consecutive independent events of probability
1 — ¢ followed by an event of probability ¢. It is convenient to define certain trivial
variants of the geometric distribution as well. We will say that A has a “c-shifted”
geometric distribution with parameter ¢ if P{\ = k+ ¢} = (1 — q)*q for k =0,1,...,
corresponding to a random variable with a minimum value of ¢, with geometrically
decaying probability beyond ec.

We now consider a more complex type of model, in which a second stochas-
tic process, Y1, Ys,... which takes on values from a distinct finite state space, B =
{B1, B, ..., Bu} is generated from the underlying (hidden) stochastic process, X;, ac-
cording to probabilistic functions corresponding to each of the state types Ay, ..., An.
If the underlying process is Markov, such a model is called a Hidden Markov Model
(HMM) or a Markov Source (MS). The theory of HMMs, originally developed by
Baum and colleagues (e.g., Baum & Petrie, 1966) is reviewed in Rabiner (1989). If
the underlying process is semi-Markov, such a model has been referred to as an explicit
state duration HMM (Rabiner, 1989) or generalized HMM (Kulp et al., 1996): here
we will use the term Hidden Semi-Markov Model (HSMM) or Semi-Markov Source
(SMS) to more clearly distinguish it from the simpler HMM/MS class of models.

2.2 Choice of model structure

2.2.1 Overview

Given a genomic DNA sequence of length L, the goal is to classify each of the L
sequence positions as to its functional state: exon, intron, intergenic, 5 untranslated
region (UTR), etc. Of course, we would also like to know for each state whether it
occurs on the forward or reverse (complementary) DNA strand and, for exons, the
reading frame, so that the encoded amino acid sequence can be derived. To put this in
a probabilistic framework, the approach taken here is to imagine that an underlying
(random) process generates a series of functional states, e.g., 5" UTR, exon, intron,
exon, 3’ UTR, ... which in turn generate the DNA sequence according to probabilistic

models of each of the states. For prediction, then, we must solve the inverse problem:
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given a sequence, infer the series of states which most likely gave rise to it.

2.2.2 A previous model

Before describing the model structure in detail, a previous probabilistic approach to
gene prediction developed by Haussler and colleagues (Krogh et al., 1994) is briefly
reviewed. These authors describe a method for identifying genes in Fscherichia coli
genomic DNA using an HMM with four basic states: Coding (C'), Intergenic (1),
Start (S) and Terminate (7'). In this very simple model, the Start state generates
one of the two initiation codons used by prokaryotes (ATG or GTG); the Terminate
state generates one of the three stop codons (TAA, TAG or TGA); the Coding state
generates one of the 61 non-termination codons; and the Intergenic state generates
one of the four nucleotide bases. The states themselves are generated according to
an underlying Markov chain which enforces the obvious biological constraints on the
series of states generated: Start is always followed by Coding, Coding is followed
by Coding or Terminate, Terminate is always followed by Intergenic, and Intergenic
is followed by Intergenic or Start. Notice that under such a model, the length of
intergenic regions (strings of consecutive Intergenic states) will have a (1-shifted)
geometric distribution with parameter ¢; = 1 — Ty, i.e. P{\ =k + 1} = ¢;(1 — q;)%,
where A is the length in base pairs and T}y is the Markov transition probability for an
1 state to be followed by another [ state. Similarly, the number of codons in a coding
region (string of consecutive Coding states) will also be distributed geometrically,
with parameter o = 1 — Toe. In fact, an important limitation of HMMs is that no
matter what the structure of the model or number states, the lengths of consecutive

runs of any state type are always geometrically distributed.

2.2.3 Length distributions of exons and introns

While the geometric distribution of lengths is in fact fairly general, arising whenever
a discrete stochastic process has the “memoryless” property (e.g., Karlin & Taylor,
1975), there is no obvious reason to expect the length distributions of gene components

to necessarily have this form. Fig. 1 displays the distributions of the lengths of
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introns and initial, internal and terminal exons derived from the nonredundant set of
238 human multi-exon genes described in Section 3.1 and Appendix A. For introns,
the observed distribution does in fact appear approximately geometric, as would be
expected in the absence of significant functional constraints on intron length, and
there is some experimental evidence relating to this issue. For example, for rabbit
B-globin, intron length was observed to be unimportant for splicing provided that a
certain minimum threshold of about 70 to 80 nucleotides was exceeded (Wieringa et
al., 1984). The observed distribution of intron lengths (Fig. 1a) tends to support this
idea: no introns less than 65 bp were observed, but above this size the distribution
appears to be approximately geometric.

For exons, on the other hand, length does appear to be an important property for
biological function, i.e. proper splicing and inclusion in the final processed mRNA. For
example, it has been shown in vivo that internal deletions of constitutively recognized
internal exons to sizes below about 50 bp may lead to exon skipping, i.e. failure to
include the exon in the final processed mRNA (Dominski & Kole, 1991), and there
is some evidence that steric interference between factors recognizing splice sites may
make splicing of small exons more difficult (e.g., Black, 1991). Of course, a number
of small exons exist and are efficiently spliced, so any such limitation cannot be
absolute. At the other end, there is some evidence that spliceosomal assembly is
inhibited if internal exons are internally expanded beyond about 300 nucleotides, e.g.,
Robberson et al. (1990), but conflicting evidence also exists (Chen & Chasin, 1994),
and recent results (Sterner et al., 1996) have suggested that the situation may be more
complicated, involving the lengths of adjacent introns as well. Overall, though, most
results have tended to support the idea that “medium-sized” internal exons (between
about 50 and 300 bp in length) may be more easily spliced than excessively long or
short exons. This idea is given substantial support by the observed distribution of
internal exon lengths (Fig. 1c), which shows a pronounced peak at around 120-150
nucleotides, with few internal exons more than 300 bp or less than 50 bp in length
(see also Hawkins, 1988 for a previous tabulation of exon and intron lengths). Initial
(Fig. 1b) and terminal (Fig. 1d) exons also have substantially peaked distributions
(possibly multi-modal) but don’t exhibit such a steep dropoff in density after 300 bp,
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suggesting that somewhat different constraints may exist for splicing of exons at or
near the ends of the pre-mRNA. In order to be able to accurately account for these
potentially important properties of exon length, I chose to use an underlying semi-
Markov architecture rather than the simpler Markov structure used previously. Such
a framework is capable of describing many of the basic structural features of genes,
e.g., the typical number of exons per gene, typical exon/intron length distributions,

etc. and yet still remains simple enough so as to be computationally tractable.

2.3 Model architecture

2.3.1 States of the model

The model structure employed is illustrated in Fig. 2. Each circle or diamond in
the figure represents a particular functional element type (state) of a gene or ge-
nomic region, namely: N, intergenic region; P, promoter; F', 5 untranslated region
(extending from the start of transcription to just before the translation initiation sig-
nal); Egng, single-exon gene (encompassing the translation initiation, coding region
and translation termination signals); Fin;, initial exon (comprising the translation
initiation, coding region and donor splice signals); Ej (0 < k < 2), phase k internal
exon (acceptor splice signal, coding region, and donor splice signal); Eiepn, terminal
exon (acceptor splice signal, coding regions, translation termination signal); 7', 3’
untranslated region (extending from just after the translation termination signal to
the poly-adenylation signal); A, poly-adenylation signal; and I (0 < k < 2), phase
k intron (extending from just after the end of the donor splice signal to just before
the branch point/acceptor splice signal). Note that, in order to keep the number
of states manageable, translation initiation/termination signals and donor/acceptor
splice signals have been included as subcomponents of the associated exon state. The
total number of state types in this model is N = 27.

In higher eukaryotes, where coding sequences are typically disrupted by one or

more introns, it is necessary to have some device to maintain a consistent reading
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Fig. 2. Gene model
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frame across the gene, since otherwise predicted exons will not always be assem-
blable into a translatable mRNA. Interestingly, the maintenance of reading frame
along the mRNA is not necessarily a completely artificial consideration arising only
in computer models of gene structure, but may in fact resemble constraints existing
in the cell. Specifically, while the splicing machinery itself presumably does not make
use of reading frame information, there is some experimental evidence, reviewed in
Maquat (1995), that eukaryotic cells may accomplish this task by selectively degrad-
ing improperly spliced mRNAs or mRNAs derived from pseudogenes which contain
premature termination codons. In the model described here, the reading frame is kept
track of by dividing introns and internal exons according to “phase”: thus, an intron
which falls between codons is considered phase 0; after the first base of a codon, phase
1; and after the second base of a codon, phase 2. Internal exons are similarly divided
according to the phase of the previous intron, which determines the codon position
of the first base pair of the exon, hence the reading frame.

All states within the transcription unit are also divided according to DNA strand:
the upper half of the figure corresponds to the states (designated with a superscript
“+7) of a gene on the forward strand, while the lower half (designated with superscript
“~") corresponds to a gene on the opposite (complementary) strand. For example,
proceeding in the 5 to 3’ direction on the (arbitrarily chosen) forward strand, the
components of an FE; (forward-strand internal exon) state will be encountered in
the order: acceptor site, coding region, donor site, while the components of an £,
(reverse-strand internal exon) state will be encountered in the order: inverted com-
plement of donor site, inverted complement of coding region, inverted complement
of acceptor site. Only the intergenic state N is not divided according to strand.
The model structure is thus capable of describing the essential gene organization of
most vertebrate genomic sequences likely to be encountered — some limitations are

discussed in Section 2.4.

2.3.2 Transitions between states

Successive states may occur in any biologically consistent order, as represented by

the arrows in Fig. 2: in the model they are generated according to the semi-Markov
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process described below. Specifically a “parse”, ¢, is generated consisting of an or-
dered set of states, ¢ = {¢1,¢2, ..., ¢»}, with an associated set of lengths (durations),
d = {di,ds,...,d,} which, using probabilistic models of each of the state types, gen-
erates a DNA sequence S of length L = 377, d;. The parse is thus a complete
description of the precise locations of all coding exons and other functional features
in the sequence (e.g., untranslated regions, promoter and poly-adenylation signals).
The generation of a parse corresponding to a (pre-defined) sequence length L is as

follows:

1) An initial state ¢; is chosen according to an initial distribution on the states, 7,

ie. 7 = P{q1 = Q;}, where Qg, @Q;...,Q2 is an indexing of the 27 state types.

2) A length (state duration), dy, corresponding to the state ¢; is generated condi-

tional on the value of ¢; from the length distribution f,, .

3) A sequence segment s; of length dy is generated, conditional on d; and ¢,

according to the sequence generating model P, , corresponding to state type

Q1-2

4) The subsequent state ¢y is generated, conditional on the value of ¢, from the

(Markov) state transition matrix 7', i.e. T;; = P{qr+1 = Qjlqr = Q:}-

5) This process is repeated until the sum, > ; d;, of the state durations first equals
or exceeds the length L, at which point the last state duration d,, is appropriately
truncated, the final stretch of sequence is generated, and the process stops.
The sequence generated is simply the concatenation of the sequence segments,

S = 5183...5,.

One slight modification to this sequence of steps has to be made to ensure that
exon lengths generated are compatible with the phases of adjacent intron states.
Specifically, exon lengths are generated in two steps: first, the number of complete

codons is generated from the appropriate length distribution; then the appropriate

2The dependence on the length d; is not explicitly indicated in order to simplify the notation.
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number (0, 1 or 2) of bp is added to each end to account for the phases of the
preceding and subsequent states, i.e. step 4) precedes steps 2) and 3) for exon states.
For example, if the number of complete codons generated for an initial exon is ¢ and
the phase of the subsequent intron is k, then the total length of the exon is: A = 3¢+k.

The model thus has four main components: a vector of initial probabilities 7, a
matrix of state transition probabilities 7};, a set of length distributions f;, and a set
of sequence generating models P;. These model components are described in detail
in Chapters 3 and 4. The remainder of this chapter is devoted to a discussion of
certain more general issues, specifically how the model is used for prediction and
how the resulting combinatorial problems can be solved, subjects which are largely

independent of the precise choice of the model components.

2.4 Limitations

Of course, real genes are not generated by any sort of Markov or semi-Markov process.
The real mechanisms by which genes are created are undoubtedly far more complex,
involving events such as gene duplication and various types of mutations, e.g., point
mutations, insertions, deletions, inversions, rearrangements, possibly “exon shuffling”,
etc., and the whole process occurs under the guidance of natural selection. The semi-
Markov assumption, in particular, limits the types of dependencies between gene
components which can be described. Specifically, the model can treat interactions
between adjacent state types (introns/exons) in a gene, but cannot deal with “long
range” dependencies between widely separated functional elements of a gene. Though
such dependencies may exist, the model structure arguably provides a reasonable
first approximation to gene structure which might be extended or elaborated as more
complex types of dependencies between gene components come to light.

The model structure is also limited in terms of the types of functional sequences
described. Specifically: (i) only protein-coding genes are treated (and not tRNA or
rRNA genes, for example); (ii) only introns occurring within the translation unit are
considered (and not those occurring in 5 or 3’ untranslated regions); (iii) overlap-

ping transcription units are not considered; (iv) certain types of regulatory elements
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(e.g., enhancers) are not represented; and (v) signals related to alternative splicing
are not included (but see Section 5.5 where an application of the model to prediction
of alternative splicing is described). Nor, of course, does the model attempt to mimic
the processes by which genes are transcribed, spliced and translated, although signals
relating to these processes are incorporated. Nevertheless, as will be seen in Chap-
ter 5, even such an approximate description of gene structure provides a very useful
framework for gene prediction, and the resulting program, GENSCAN, is capable of

reconstructing highly complex multi-exon gene structures in many cases.

2.5 Prediction

Assuming for the moment that the four basic components of the model described
in Section 2.3.2 have been specified, the model can be used for prediction in the
following way. For a fixed sequence length L, consider the space ) = ®; x Sy, where
¢y, is the set of (all possible) parses of length L and Sp, is the set of (all possible)
DNA sequences of length L. The model M can then be thought of as a probability
measure on this space, i.e. a function which assigns a probability mass (density) to
each parse/sequence pair. Specifically, the joint probability P{¢;, S}, of generating a
specific parse ¢; € @1, and a specific sequence S € Sy, is given by:

n

[1] P{¢27 S} = 7Tq1fq1 (dl)Pfh (51) H qu—hqquk(dk)qu (Sk)

k=2

where the states of ¢; are ¢y, g2, ..., ¢, with associated state lengths dy,d>, ..., d,, which
break the sequence into segments sy, s, ..., s,. The conditional probability of the parse

éi given the sequence S can then be calculated (Bayes’ Rule) as:

P{6i, S5} _ P{¢i, S}
P{S} Yo,ea, P{j, 5}

2] P{¢:i|S} =

The basic assumption is that if the model accurately reflects the biological constraints
on gene sequence/structure, then the parse or parses with highest likelihood (condi-

tional probability) should correspond closely to the correct gene structure(s). One
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way of looking at the prediction problem for such a model is to think of the sequence
S as being the observable manifestation of the underlying (hidden) series of states,

41, G2, ... which we would like to infer.

2.6 Algorithmic issues

2.6.1 Combinatorial explosion of gene structures

To use such a model for gene prediction, we must have some means of determin-
ing which of the many possible gene structures (involving any valid combination of
states/lengths) have highest likelihood for a given sequence. Just how big is this
search space? To address this question, a simple computer experiment was per-
formed in which the number of potential exons meeting the minimal constraints of
the state models were counted in a set of human genomic sequences. Specifically,
the constraints were that potential exons should begin with ATG or a minimal ac-
ceptor site (AG), end with a stop codon or minimal donor site (GT), and have no
in-frame stop codons (for potential internal exons, the three possible reading frames
are treated separately). The results were that, for sequences of a few kb or longer,
the number of potential exons grows roughly linearly with sequence length, and is
typically comparable to the number of base pairs in the sequence (data not shown).
The implication is that the number of possible multi-exon gene structures, involving
compatible combinations of potential exons, will grow approximately exponentially
with sequence length, leading to a combinatorial explosion for even moderate length
sequences.

A recent paper by Wu (1996) addressed this question by explicitly calculating
how many possible multi-exon gene structures were minimally compatible in terms
of initiation codon, open reading frame / stop codon and the same minimal splice
site constraints used above, with each of a set of vertebrate genomic sequences. The
results were that, as expected, the number of possible gene structures grows approx-
imately exponentially with sequence length, and that even for sequences as short as

10 kilobases, the number of possible structures typically exceeds 10'°° (more than the
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number of atoms in the solar system). Thus, it is utterly impossible to explore all
possible gene structures in a sequence, and if the model structure is to be of practical

use for gene prediction, efficient searching algorithms are required.

2.6.2 Quantities to be computed

It is of primary interest to solve the following three problems:

(i) Partition function. Calculate the quantity P{S} = 3, co, P{¢;,5}. This
quantity, corresponding to the partition function Z in statistical physics, allows
us to interconvert joint and conditional probabilities using eq. [2] and has other

important uses.

(ii) Fzon probabilities. For a potential exon ¢, calculate the quantity P{e|S}, i.e.
the probability that the exon is correct (part of a gene), given the sequence.
For the model used here, this involves summing over all parses (potential gene

structures) which contain the exon in the correct reading frame.

(iii) Optimization. Find the parse (gene structure description) which has highest

conditional probability given the sequence.

It will be seen that these three problems are closely related and that similar types
of algorithms may be used to solve each of them. Some brief calculations described
below for the optimization problem serve to motivate two key approximations which

are made in order to reduce the computational complexity of these problems.

2.6.3 Algorithmic complexity of the optimization problem

For a Markov source (HMM) model, the optimization problem is efficiently solved by
the Viterbi algorithm (Viterbi, 1967, Forney, 1973), requiring on the order of N*L
computations, where N is the number of state types in the model and L is the length
of the sequence. In practice, assuming that a current computer workstation can

perform about 10® computations per second, the amount of time required to process

a 100 kb sequence with a 27-state HMM would be on the order of 27% x 10°/10% = 0.73
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seconds — certainly fast enough for practical use. For a semi-Markov source (HSMM)
model, on the other hand, a more complex algorithm is required (e.g., Rabiner, 1989,
Section IV D), involving a recursion which must at each position search back over
all previous positions, and the number of computations increases to approximately
N?L?/2, i.e. it grows cubically with sequence length rather than linearly. Thus, the
time to process a 100 kb sequence with a general 27-state HSMM model would be
about: 27 x (10°)?/(2 x 10®) = 3.6 x 10? seconds, or about 115 years! Obviously,
the model and/or algorithm must be simplified in some way to make this approach
practical.

In applications of semi-Markov source models to speech recognition (e.g., Levin-
son, 1986), this computational problem has been dealt with by assuming that state
durations (which correspond to spoken words or syllables in these models) are at most
a fixed number, D, units long. With this constraint, the number of computations is
reduced to approximately N?D?L /2, which is practical for small enough values of D.
However, setting limits on state durations is not a reasonable simplification in the
context of gene modeling since some of the states, particularly those corresponding
to intron and intergenic regions, can be almost arbitrarily long in human genomic
sequences. For example, intron 17 in the human retinoblastoma gene is more than 71

kilobases in length, and even longer introns are known.

2.6.4 Two simplifying assumptions

I have chosen a different approach (which, to my knowledge, has not been used
previously) to reducing the computational complexity of the problem, which is to
assume that the length distributions and sequence generating models for a certain
subset of the state types have a particular form. Specifically, states of the class
D={N,Ft, F~, Tt T~ I I}, I] Iy, I{,I;} (represented as diamonds in Fig. 2),
which can apparently be almost arbitrarily long in human genes, are assumed to
have: 1) geometric length distributions; and 2) sequence generating models which
are “factorable”, i.e. such that P;(S,.) = Pi(Sas)Pi(Se4+1,), where a, b, ¢ are sequence
positions with 1 < a < b < ¢ < L, and S, , represents the sequence segment from

position x to y inclusive. Under these assumptions, for any type-D state, the joint
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probability of generating the sequence segment S, ;1 differs from that of generating
Sa.p by a constant factor®, p; P(Sy41), independent of a. This property allows the
recursions needed to solve the three problems described in Section 2.6.2 to be written
in a particularly simple form, as will be seen below. The remaining types of states,
designated C (represented as circles in Fig. 2), are still treated using general length
distributions and sequence generating models, as described in Chapters 3 and 4. In
the worst case, for a sequence which contains arbitrarily long open reading frames,
the number of computations grows quadratically with sequence length; for virtually
all real sequences, however, these approximations result in run times which grow only

linearly with sequence length.

2.7 The partition function

2.7.1 Preliminaries

Before describing the algorithms, a convention regarding states which extend off the
edges of the sequence must be adopted. The problem is how to treat, for example, a
potential £} state ending with a stop codon at position 97,98, 99 of the sequence
and beginning at some unspecified position prior to the beginning of the sequence.
Such a state is difficult to evaluate under the model since we do not know the exact
length of the potential exon, whether or not there is an appropriate acceptor splice
site sequence, etc. The expedient used here is to assume that the exon begins exactly
at the boundary of the sequence (position 1) so that position 0 would correspond
to the preceding type-D state, in this case an I (intron phase 0) state.* A similar
assumption is made for all potential type-C states which extend to the sequence
boundaries so that, in particular, positions 0 (immediately before the sequence) and
L + 1 (immediately after the sequence) will always correspond to type-D states.

Examination of Fig. 2 shows that all allowed state transitions are from type-D states

35S, represents the nucleotide at position z of the sequence.

*0Of course, in interpreting the program results, one does not assume that predicted exons which
extend to the edge of the sequence necessarily end at exactly this point — this assumption is made
merely to simplify the algorithm description.
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to type-C states or vice versa, but never between two type-D states or two type-C
states. Thus, if we begin at position 0 and end at L + 1, any valid parse of the
sequence will consist of an alternating series of states of types: D,C,D,C,D,...,C, D,
comprising M type-C states and M + 1 type-D states. A practical consequence of this
assumption is that only eleven variables, corresponding to the type-D states, rather
than 27, corresponding to all state types, are required in the recursions described
below.

All of the recursions described require construction of a list (array) L; at each
position j in the sequence, representing the set {eo, €1, ..., €, -1} of all potential type-
C states ending exactly at position j which have non-zero probability. With each
such state ¢ are associated the following properties (also stored in arrays): ag, the
beginning (first nucleotide position) of the state; by (= j), the end (last nucleotide
position) of the state; Ay (= by + 1 — ay), the length of the state; y, the state type;
x, the previous state type; and zg, the subsequent state type. For example, if there
is a GT dinucleotide (minimal donor site) at positions j+1, j 4+ 2 of the sequence, and
an ATG trinucleotide beginning at a position ¢ < 7 — 2, then the list L; will contain
a potential initial exon ¢, beginning at position® a; = 7, ending at b, = j, of length
+
inits

is F* (5’ UTR), and the subsequent state type 2, is I;, where h is the phase of the

A = 7+ 1 — 2. The state type y; in this example is E the previous state type x
subsequent intron, which can be calculated from the exon length as: A = Ay mod 3.
Notice in particular (Fig. 2) that, given the length of the state, each type-C state
type has a unique previous and subsequent state type, so the variables x; and zj
are always uniquely defined. In the recursion descriptions, the type-D state types
are indexed (), ..., ()10, with geometric length parameters go, ..., g10, respectively, and

complements p; = 1 — ¢; for 0 <z < 10.

5Actually, the exon states as previously defined extend from a few bases before i to a few bases
after j since the translation initiation/acceptor and termination signal/donor splice signals are in-
cluded as part of the exon state. For convenience, only the actual exon boundaries (7, ) will be
referred to from here on, with the understanding that the state endpoints are slightly different.
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2.7.2 The forward algorithm

The partition function, Z = P{S} = ¥, co, P{¢;, 5}, can be calculated using what
is known as a “forward” algorithm (e.g., Rabiner, 1989). In this approach, variables
a;(7) are defined which store the sum of the joint probabilities of all parses of the
subsequence Sp; which end in state type (); at position j. The key observation al-
lowing calculation of this enormous sum in a reasonable number of steps is that the

«;(7) variables can be updated recursively, as given below.

Initialization:

[3a] a;(1) = mp; Pi(S1), 0 <:<10.
Induction:

[30] ai(j + 1) = ai()piLi(Sj1)  +

Z aﬁk(ak - 1)(1 - pl‘k)Tl'kvykfyk()\k)Pyk(Sakvj)TykvzkpiPi(Sj‘Fl)?

€k ELJ \ZE=1

0<i<10, 1<j<L-1.

Termination:
[3¢] a(L+1)=ai(L) +

> g (ar — D)1 = po) Top i for (Mk) Py (Sapn) Tyerze, 0 <4 < 10.
ex€Lp,z=1
Note that the recursion is carried out up to position L + 1, to allow for exon/signal
states which extend to the edge of the sequence as discussed previously. Finally, since
all parses must end in one of the eleven type-D states, the partitition function is given
by: P{S} = 212, a;(L+1). The key simplification resulting from the two assumptions
described in the previous section occurs in the induction step, eq. [3b]. Specifically,

note that the probability of all parses ending in state ¢ at position j + 1 which were
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in state ¢ at the previous position can be calculated simply as «;(j)p; Pi(Sj41). A
problem which arises in the practical implementation of this algorithm is that the
a;(7) variables tend to zero as j increases, and may fall below the limits of the
precision of the computer. This issue may be handled in a number of ways, e.g., by

periodically rescaling the «;(j) (multiplying by a large constant), which can later be
divided out when the quantity P{S} is to be used.

2.8 Exon probabilities

We now consider the event €, that a particular exon state (from one of the lists L;)
is correct, i.e. is part of a gene in the correct reading frame. Under the model, this

event has probability

P{G, S} . Zgb]:eEgb] P{¢]7S}

where the sum is taken over all parses in ®; which contain the exact exon ¢ as a
component. As in the case of the partition function problem, this sum can involve an
enormous number of potential parses making solution by exhaustive enumeration im-
practical. However, it is possible to perform this calculation more efficiently, using the
the previously described forward algorithm combined with an analogous “backward”

algorithm (e.g., Rabiner, 1989).

2.8.1 The backward algorithm

In this approach, variables (3;(j) are defined which store the sum of the joint proba-
bilities of all parses of the subsequence S; 1, which are in state (); at position j. Again,
these variables can be updated recursively, in this instance beginning from the end of

the sequence and proceeding backwards.

Initialization:

[5a] B(L+1)=1, 0<:i<I0.
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Induction:
[50] Bi(7) =piP(S))B:(7 +1) +

Z piPi(Sj)T$k7ykuk(Sj+17bk)fyk()‘k)Tyk72k(1 - ka)BZk(bk + 1)7

€k ELJ‘+1 JTR=1

A

Here, L; is analogous to the previously described list L;, but instead represents the
list of potential type-C states which begin at position j. No termination step is
required, since for our purposes only the intermediate values of 3;(j) are needed.
Again, measures must be taken to ensure that the 3;(j) variables remain within the

precision limits of the computer.

2.8.2 The forward-backward formula

Consider a potential exon € beginning at ¢ and ending at b (of length A = b+ 1 — a).
If the exon is of type y, and the preceding and subsequent states are of types z and =z,
respectively, then the desired conditional probability P{¢|S} can be calculated using
the intermediate values of the forward and backward algorithms and the previously

calculated value of the partition function as:

= P) Loy [y (M) By (Sap) Ty, (1 = p:)B-(b+ 1)

6 psy = 20 e

Here, a;(a —1) captures the probabilities of all “left-parses” of S; ,—1 which end in the
appropriate state (e.g., intron or 5 UTR) immediately before the exon, and 3,(b+ 1)
captures the probabilities of all “right-parses” of Sy1; ;, which begin in the appropriate
state (e.g., intron or 3’ UTR) immediately after the exon: multiplying these quantities
corresponds to summing the probabilities of all possible compatible pairings of a left-
parse with a right-parse. This general approach to calculation has been refered to as

the “forward-backward” procedure (e.g., Rabiner, 1989 — see also Stormo & Haussler,
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1994) for obvious reasons. It is worthy of note that the probability P{e|S} introduced
here is an intrinsically non-local property of the sequence, since it derives not only
from features of the sequence segment from a to b, but also from potentially distant
portions of the sequence through its dependence on the joint probabilities of parses of
the sequence from 1 to @ — 1 and from b+ 1 to L. Thus, for example, the probability
of a potential initial exon at [a,b] would in general be increased by the presence of a
strong consensus promoter signal at an appropriate distance upstream of a, since this
would tend to increase the joint probabilities of parses ending in the F' (5" UTR) state
at a — 1. This probability provides a very useful measure of the reliability of predicted
exons, as will be seen in Chapter 5. It is also noteworthy that the non-locality of this
quantity makes it fundamentally different from typical exon “scores” derived in other
gene prediction programs — GRAIL, GeneParser, etc., which typically depend only
on local properties of the exon such as splice signals, codon or hexamer composition,

and so forth.

2.9 Optimization and “suboptimization”

2.9.1 The Viterbi algorithm

As mentioned previously, an efficient method known as the Viterbi algorithm exists
for finding the optimal parse in the case of a Markov source model. In this approach,
variables 7;(j) are defined which store the joint probability of the optimal (highest
probability) parse of the subsequence Sy ; which ends in state @); at position j. These

variables can be calculated recursively as follows.

Initialization:
[7a] vi(1) = mPi(S1)p;, 0 <i<10.
Induction:

[70] %7+ 1) = max { %(j)pifi(Sin),
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max { %Uk(ak_ 1)(1 _p$k)TT-kvykfyk()\k)Pyk(Sakvj)TykvzkpiPi(Sj‘}'l) } }7

er€L;j, 2 =1
0<: <10, 1<y3<L—1.
Termination:
[7¢] V(L +1)=max { (L),

odnax o Ye(ar = DT fu (M) P (Sat) Ty} 1 0<0<10.
Since any parse must end in one of the eleven type-D state types, the probability of
the optimal parse is given by: P{¢,, S} = max;{7;(L+1)}. Note that the algorithm
is almost identical in form to the forward algorithm, except that maxima are taken
at each step rather than sums. Again, the recursion is carried out up to position
L + 1, to allow for exon/signal states which extend to the edge of the sequence as
discussed previously. Whenever a maximum is taken, the locations and nature of
the transitions between states which gave rise to the maximum value are recorded
in a separate array. The exact series of states in ¢,,; can then be reconstructed by
a standard backtracking procedure (e.g., Rabiner, 1989), essentially searching back
through this array to recover the sequence of transitions which led to the optimal
probability, which gives the most likely parse (gene structure description) in the

sequence.

2.9.2 Computational complexity of algorithms

Examining the induction steps in the three algorithms described (forward, backward,
and Viterbi), it can be seen that all have essentially the same complexity, which is
on the order of the number of potential type-C states in the sequence which have
non-zero probability. In practice, this number remains manageable since potential
exons lacking minimal splice site constraints (acceptor: AG, donor: GT), initiation
(ATG) or termination (stop codon) constraints, or having in-frame stop codons have
probability zero under the model (see Chapters 3 and 4) and are thus excluded from

the lists L; (and [A/]) As mentioned previously, the number of such potential exons
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grows roughly linearly with sequence length for sequences longer than a few kilobases.
The only exception is for very unusual sequences which have enormous open reading
frames — run time for such sequences will be significantly longer. Besides exons,
the other type-C states, promoter and poly-adenylation signals, have short, highly
restricted length distributions so that the total number of such states which need to
be evaluated per position is only a small constant. Thus, total run time tends to grow

only linearly with sequence length.

2.9.3 Suboptimal parses and exons

Of course, the parse with maximal joint probability may not necessarily correspond
to the “correct” biological parse, i.e. the actual set of exons/genes present in the
sequence. In addition, there may be more than one parse which can be considered
“correct”, for example, in the case of a gene which is alternatively transcribed, trans-
lated or spliced. “Suboptimal parses”, i.e. parses which have joint probability which
is slightly less than the optimal parse, may be of interest in both of these contexts.
First, in studying the performance of the algorithm it may be useful to determine how
close the correct parse was to the optimal parse in its joint probability. Secondly, it
may be of interest to see whether alternative splicing patterns of a gene correspond to
suboptimal parses, and perhaps to see whether alternative splicing can be predicted
in cases where several optimal and/or sub-optimal parses have almost equally high
probabilities. There are a number of ways to calculate suboptimal parses in general
(e.g., Zuker, 1990). Most simply, one can store at each position of the Viterbi recur-
sion the joint probabilities of the top k parses ending in state ¢ at position j rather
than just the single top solution: in this manner the top k parses overall can be
found. A disadvantage of this approach is that k times as much memory and k times
as many operations are required, which can be quite computationally expensive. An
alternative approach, which has been implemented in the GENSCAN program, is to
determine “suboptimal exons” rather than suboptimal parses. Specifically, the con-
ditional probability of each potential exon is calculated (using the forward-backward
formula), and all such exons whose probabilities exceed a prescribed minimum thresh-

old are recorded. This task requires very little extra memory or time to accomplish



CHAPTER 2. MODEL ARCHITECTURE AND ALGORITHMS 31

and can be helpful in identifying true exons missed by the optimal parse or exons
with weak splice signals which are included in only some alternative splices of a gene

(examples are given in Chapter 5).

2.10 Exon ratios and scores

The formal descriptions of the model and associated algorithms given in the preceding
sections do not necessarily give much insight into how the method actually works.
The purpose of this section is to help clarify exactly how each of the model compo-
nents contribute to exon/gene prediction by detailing the Viterbi calculations for the

forward-strand intron state types (I, I, I) for a short sample sequence:

10 20 30
1234567891 123456789 | 12345672829 |
TTTTACAGGACCATGCTACACCGGTGGATT

To simplify the discussion, only exons completely contained in the sequence are con-
sidered (and not those extending off the edges), and the states are indexed such that
Q; = It for 0 < i < 2. Since the sequence contains no stop codons and only one
GT dinucleotide (at positions 24, 25), all of the lists L; will be devoid of potential
exons except for Las. Therefore, in the induction step (eq. [7b]) for 4;(7), the second
maximum is always over an empty set for j < 23, so the ~;(y) variables have the

simple form:

J
[8] %i(7) = = [ piPi(Sk), 0<:<2, 1<5<23,
k=1

representing the simple parses {q, = I, d; = j}, in which the sequence from 1 to j
is in state I (i.e., forward-strand phase i intron). The list Ly3, however, will contain
four potential exons (Table 1). Since the model distinguishes internal exon phase,
the segment [9,23] represents three distinct potential exons, corresponding to the

three phase (reading frame) types (see last column of Table 1). On the other hand,
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Table 1. Exon list at position 23 of sample sequence

Exon ap bp A oy zr  Reading frame

€o 9 23 15 If Ef I GAC CAT GCT ACA CCG
€1 9 23 15 I Ef I GA CCA TGC TAC ACC G
€ 9 23 15 I FEFf If G ACC ATG CTA CAC CG
€ 13 23 11 F* Er, If ATG CTA CAC CG

Legend. Potential exons in the sample 30 bp sequence given in the text are described.

the segment [13,23] corresponds to only one potential initial exon, since the reading
frame is determined by the location of the ATG.

The induction step (eq. [7b]) for 7o(24) will therefore involve a comparison between

the quantities:

Ao = 70(23)poPo(S24), corresponding to extension by one nucleotide of the

previous optimal parse ending in state I at position 23; and

By = v(8)(1 — pO)TO7E6|'fE6|'(15)PE3'(59723)TE6|'7OPOP0(524)7 corresponding to the
optimal parse of S g ending in state I followed by an EF exon of length 15,

followed by one nucleotide in state I .

The comparison for state [ is similar. For the I;' recursion at j = 24, three different

quantities are compared:
A,, corresponding to extension of the v,(23) parse by one nucleotide;
B, corresponding to addition of e, (plus 1 bp of 1) to the 7,(8) parse; and
Cy, corresponding to addition of €3 (plus 1 bp of 1)) to the v+ (8) parse.

Consider the “exon ratio”, Ry = ﬁ—g, the value of which determines whether ¢ is
included in the optimal parse ending in state I at position 24. This ratio may be

simplified using eq. [8] as follows:

mo([Tiz1 PoFPo(Sk)) (1 = po) Ty gt it (15) Py (So,23) Tt oPo Po(S24)
o Hi; poFo(Sk)

9]  Ro=
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- T g Tey o (1 = po)fy+(15) P+ (S0,23)
B . 1 , P(lJ5 PO(S9,23)

@) (i) (iid)

From this factorization it can be seen that inclusion or exclusion of the exon depends
on: (i) the relative likelihood of making the state transitions I — Ef and Ef — I
vs no transitions; (ii) the relative likelihood of ending an intron state (1 — pg) and
generating a 15 bp internal exon (fE;r(lf))) vs continuing an existing intron state
by 15 bp (p§®); and (iii) the relative likelihood of generating the sequence segment
Sg.23 under the model for an internal exon (E{f) vs the model for phase zero intron
(IF). Generally, the most important contribution to such exon ratios comes from the
sequence generating models (particularly the splice signal models, which are compo-

nents of the exon state models), so that the critical quantity for prediction is the
PES- (S9,23)
Py(S9,23)
classify the segment [9, 23] as exon or intron depending on the relative likelihood that

ratio Ry = . Intuitively, this makes sense: the algorithm decides whether to
the sequence was generated under these two alternative models. From another point
of view, prediction depends not on the absolute probability of generating a sequence
segment under the exon model, for instance, but rather on the ratio of this probability
to that of generating the segment under the alternative (intron) model.

It is convenient to define the “score”, o, of an exon as the logarithm (base 2)
of the exon ratio, e.g., the score of exon ¢ is 09 = log,(Rp). In general, positively
scoring exons (i.e. those with exon ratios > 1) will tend to be included in the optimal
parse while negatively scoring exons will not, but this is not always the case. For
instance, if two potential exons ending at the same position and in the same state
both have positive scores, then at most one will end up being included in the optimal
parse ending in that state. The score, which is a measure of exon quality depending
only on local sequence properties, can be contrasted with the conditional probability
P{¢|S} described in Section 2.8, which depends on the entire sequence. For example,
if two identical copies A, A’ of a sequence segment which is potentially an exon occur
at different places in a larger sequence, both will have the same exon score, but
they will not in general have the same conditional probability. Biologically, the score

may represent in part how “spliceable” an exon is, which may be a local property of
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the splice signals, but the conditional probability may be a better representation of
whether or not the exon will actually be included as part of a gene. For instance, if
the segment A occurs upstream of the promoter and therefore is not even transcribed,
then no matter how strong the splice signals happen to be, A will not become part of
the mRNA, while the identical segment A’ occurring in the middle of the transcription

unit may very well be spliced as an exon.



Chapter 3

GENE STRUCTURAL AND
COMPOSITIONAL
PROPERTIES

This chapter describes the studies of the structural and compositional features of hu-
man genes which were undertaken in order to derive the parameters of the gene model
described in the previous chapter. Section 3.1 describes the construction of the sets
of human gene sequences which were studied. The next section reviews the isochore
organization of the human genome and describes some of the quite dramatic rela-
tionships between C+G content and certain aspects of gene structure. These studies
motivate the use of separate sets of model parameters to describe genes in distinct
C+G% compositional groups of sequences. Section 3.3 describes the way in which
state initial probabilities were derived using estimates of gene density and structural
properties appropriate to sequences belonging to each of four C+G% compositional
groups; the next section discusses the corresponding derivation for state transition
probabilities. Section 3.5 discusses the length distributions used for introns, exons
and other states of the model, and describes the procedure used to smooth the rather
sparse empirical exon length distributions. Finally, the last section considers the
compositional properties of bulk human coding and non-coding DNA and how these

properties may be used in prediction.

35
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3.1 Sequence sets

In order to derive a realistic description of the structural and compositional features of
human genes, large nonredundant sets of sequences are required. A set of 386 human
genes sequenced at the genomic level was initially constructed in the summer of 1994
and used for preliminary studies of gene compositional properties. Subsequently, a
similar (but larger) set of 491 human genes was independently constructed by David
Kulp (University of California, Santa Cruz) and Martin Reese (Lawrence Berkeley
National Laboratories) for use as a common dataset for the training and testing of
gene prediction methods!. In order to be able to more easily compare my results
with those of other groups working on gene prediction, I chose to use the Kulp/Reese
dataset (version of 22 August, 1995) for further studies of gene properties related to
the development of the GENSCAN program. This set was constructed by searching
the GenBank nucleic acid sequence database (Release 89, 1995) for sequences con-
taining single complete human genes (i.e. containing at least the initial ATG through
the stop codon) which were sequenced at the genomic level (as opposed to cDNA
sequences). Certain additional constraints were imposed, e.g., there should be only
one “CDS” (coding region) feature in the annotation (in order to avoid alternatively
spliced genes), and the CDS annotation should be minimally self-consistent, e.g., there
should be no inframe stop codons in coding regions and splice signals should match
the minimal consensus (AG for acceptor sites, GT for donor sites). The resulting set
was culled of redundant or highly similar entries by comparison at the protein level
with the program BLASTP (Altschul et al., 1990) — more complete details are given
in Appendix A.

Close examination of this dataset revealed the presence of certain sequences which
were deemed inappropriate for inclusion, including genes of mitochondrial or viral
origin, genes for which the exon locations were described as “uncertain” or “putative”,
etc. — see Appendix A.? Elimination of these sequences resulted in a “clean” set of

428 sequences. For subsequent testing of the program, this set was further reduced

Yftp://ftp.cse.ucsc.edu/pub/dna/genes]
2 After discussions with M. G. Reese, it was decided to omit most of these sequences from subse-
quent versions of the Kulp/Reese dataset.
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by removing all genes more than 25% identical at the amino acid level to those of the
GeneParser test sets (Snyder & Stormo, 1995) using the PROSET program (Brendel,
1992) with default parameters. The set of 380 gene sequences resulting from this
procedure, listed in Appendix A, are referred to as the GENSCAN learning set, L.
The sequences of £ have an average length of about 6,800 bp and in total repre-
sent 2,581 kilobases of genomic DNA, of which 16% is coding. The average amount
of coding sequence per gene is 1100 bp, corresponding to an average protein length of
367 amino acids. Some of the sequences begin at or near the initial ATG and end soon
after the stop codon, while others contain the complete 5" and 3’ UTRs and a certain
amount of the flanking (intergenic) regions. The set comprises a total of 142 single-
exon (intronless) genes (this subset is designated Lg,q.) and 238 multi-exon genes
(designated L,,u4i): the multi-exon genes contain a total of 1,492 exons and 1,254
introns (hence 1,254 donor and acceptor splice signals). All of the sequences contain a
single CDS feature which indicates the locations of the coding exons: since the coding
region is usually of primary interest to the laboratory submitting the sequence and
is typically determined by comparing the genomic and cDNA sequences, this feature
is likely to be highly accurate. In addition, some sequences have a “prim_transcript”
feature indicating the boundaries of the primary transcript and/or annotation indi-
cating the location of the promoter or poly-adenylation signals: annotation of these
features is in general much less reliable, however, and must be treated with caution.
All model parameters were derived from this data set as described later in this
chapter except the promoter model, which was based on published sources, and the
coding region model, for which this set was supplemented with a set of complete
human cDNA sequences constructed as follows. All complete human cDNA sequences
(containing at least the initial AT G through the stop codon) corresponding to proteins
of at least 100 amino acids in length® were extracted from GenBank Release 83 (1994).
This set was cleaned at the amino acid level using PROSET as above both with respect
to itself and with respect to the GeneParser test sets, resulting in a set of 1,619 cDNA
sequences, designated L.pya (sequence list available on request). This set was then

combined with the coding sequences from £ to form a set L.o4ing of 1,999 complete

3The length minimum was imposed in order to avoid inclusion of cDNA fragments.
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coding sequences totaling in excess of 1,065,000 codons.

3.2 Gene structure and C+G content

A question which must be addressed at the outset is whether the human genome is
essentially homogeneous, in which case a single set of model parameters might be
suitable to describe all genes, or heterogeneous, in which case several sets of model
parameters might be more appropriate. Several lines of evidence suggest that het-
erogeneity is the rule rather than the exception. First, significant differences in gene
structure (e.g., intron length) were observed between distinct C+G% compositional
subsets of the learning set £ (described later in this section). Second, the predictive
accuracy of most existing gene prediction programs varies depending on the C4+G
content of the sequence (e.g., Lopez et al., 1994, Snyder & Stormo, 1995), with typi-
cally lower levels of accuracy observed for A+T rich sequences. Third, a large body of
work on the compositional structure of the human genome has demonstrated that the
genome is substantially heterogeneous with respect to C+G content and that gene
density, gene length and other important properties appear to be strongly correlated

with C+G content. This work is reviewed briefly below.

3.2.1 The isochore organization of the human genome

Bernardi and other researchers (e.g., Bernardi et al., 1985 and references therein)
have used CsCl and Cs3504 density gradient centrifugation of randomly sheared
genomic DNA and other experimental techniques to study genome compositional
properties. These studies have shown that the human genome (and the genomes of
other warm-blooded vertebrates) is a mosaic of “isochores”, large regions perhaps
several hundreds of kilobases or more in length whose base composition is locally
homogeneous but varies significantly between disjoint regions. Although the exact
number of distinct isochores and the range of C+G% composition corresponding to

each are not completely settled, the genome is typically divided into five categories

or “compartments”, labeled L1, L2 (L for light, A+T rich), Hl1, H2 and H3 (H for
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heavy, C+G rich) in increasing order of C+G% content.

Using several sources of information, including the C'sC1 centrifugation data of
Cuny et al. (1981) combined with compositional studies of sequenced human genes
of known isochore localization, Mouchiroud et al. (1991) estimated the approximate
proportion of genomic DNA and proportion of genes found in each of three isochore

groupings:
L14L2 (less than about 43% genomic C+G), 62% of genome, 34% of genes;
HI14+H2 (about 43-51% C+G), 31% of genome, 38% of genes; and
H3 (> 51% C+G), 3-5% of genome and 28% of human genes.

As a consequence, gene density in C+G rich regions (H3) is estimated to be at least
five times higher than in moderate C+G regions (H1+H2) and at least ten times
higher than in A+T rich regions (L1+L2)! Recent studies comparing transcriptional
mapping data with isochore classification of distinct regions of human chromosome
21 (reviewed in Gardiner, 1996) have confirmed the existence of extreme differences
in gene density between A+T rich and C+G rich portions of the human genome.
Studies of available GenBank sequences by Duret et al. (1995) revealed other striking
differences between regions of differing C+G content, e.g., that the amount of intronic
DNA is on average three times higher for genes in A+T rich regions (L1+L2) than
for genes in C+G rich regions (H3).

3.2.2 Effect of C+G% content on gene structural properties

Given this previous work, it was naturally of interest to see whether corresponding
differences existed between genes of differing C+G content in the learning set. The
set £ was initially partitioned into three subsets corresponding to those used by Duret
et al. and Mouchiroud et al., but since the H3 subset was far more populated than
the others (200 out of 380 sequences), it was divided approximately in half to give
a total of four subsets: I (< 43% C+GQG); 11 (43 — 51); III (51 — 57); and IV (> 57).
The sequences of £ were assigned to these groups based on the C+G% composition

of the GenBank sequence, assuming that this is a reasonably close approximation to
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the content of the genomic region from which the sequence derived. Some structural
properties of the single- and multi-exon genes in these four subsets are compared in
Table 2.

The most dramatic difference seen between the groups I to IV is that, consistent
with the results of Duret et al. (1995), intron length increases dramatically as a
function of A+T content, with introns in the most A+T rich group (I) almost four
times longer on average than those in the most C+G rich group (IV). Exon lengths,
on the other hand, appear to decrease slightly with increasing A+T content, but the
differences are far less pronounced. The number of introns per multi-exon gene also
appears to be roughly the same in the four groups. Other features of note are the
surprisingly high proportion (142/380 = 37%) of single-exon genes and the skewed
distribution of genes across the C+G compositional classes. Notably, the proportion
of genes in group 1 (65/380 = 17%) is only half that expected from the data of
Mouchiroud et al. (34%) for isochores L1412, the proportion in group II (115/380 =
30%) is lower than the 38% estimated for isochores HI4+H2, and the proportion in
groups 1141V (200/380 = 53%) is almost twice the expected value (28%) for isochore
H3. Additionally, the average CDS lengths for single- and multi-exon genes (1,224
and 1,029 bp, respectively) are surprisingly short compared to the average CDS length
of 1,719 bp observed in the set L.pna.

A likely explanation which accounts at least qualitatively for all of these somewhat
puzzling results is that, since short genes are easier to sequence completely, there is
a strong systematic bias in the set £ toward short genes. Such a bias would likely
be weaker in the set L.pya since the length of the cDNA of a gene is typically
much shorter than its full genomic extent and therefore doesn’t pose so much of
an impediment to complete sequencing. A bias toward short genes also explains
the skewed distribution of genes across the four C+G groups. Specifically, the fact
that genes in A4 rich regions (group I) are approximately twice as long as genes
in moderate to high C+G regions (e.g., comparing the estimated transcript lengths
in Table 2) and therefore require approximately twice as much time and effort to
sequence, probably explains why there are only half as many such genes as expected

in the set £. Conversely, the fact that single-exon genes are typically less than half as
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Table 2. Structural properties of genes partitioned according to C+G% content

Group
Property 1 II 11 v All
C+G% range < 43 43-51 51-57 > 57 | 0-100
Corresponding isochore L1412 HI1+H2 H3 H3 All
Number of single-exon genes 21 44 45 32 142
Number of multi-exon genes 44 71 54 69 238
Total number of genes 65 115 99 101 380
Mean CDS length, Lsnge (bp) 1,130 1,251 1,304 1,137 | 1,224
Mean CDS length, £, (bp) 902 908 1,118 1,165 | 1,029
Mean exon length, £, (bp) 148 154 172 177 164
Mean intron length, £, (bp) 2,069 1,086 801 518 | 1018
Introns per gene, L, 5.1 4.9 5.5 5.6 5.3
Mean transcript length, Lingie (bp) | 2,356 2477 2,530 2,363 | 2,450
Mean transcript length, L., (bp) | 12,680 7,455 6,750 5,292 | 7,621

Legend. Genes of the learning set were partitioned into four groups as described in the
text. Average properties were derived from the sequences of each group as a whole, or
restricted to the single-exon genes (Lsingie) or multi-exon genes (Ly,q1i) of the group, as
indicated. Since the proportion of sequences containing the necessary “prim_transcript”
annotation was too low to permit reliable estimation of average 5" and 3’ UTR lengths in
each group seperately, only overall average values of 769 bp and 457 bp, respectively, were
calculated: these values were used in the estimation of mean transcript lengths above and

in subsequent calculations.
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long as multi-exon genes at the genomic level (again, comparing mean transcript sizes,
Table 2) probably means that single-exon genes are over-represented at least twofold
in the set £ relative to the true genomic proportion of such genes. In order to correct
for this “short gene bias”, the proportion of single-exon genes used in derivation of
the GENSCAN parameters was taken to be one half of the observed value in each
C+G% group. Although this estimate is rather crude and could err significantly in
either direction, it is likely to be more accurate than simply ignoring the bias in L.
There are undoubtedly other types of biases present in the set £, e.g., a bias toward
genes of medical interest, a bias away from genes whose cDNAs are difficult to clone,
etc. Since it would be extremely difficult to account for such biases systematically, it

was decided simply to live with them.

3.3 Initial probabilities

Since the goal is to model a randomly chosen block of contiguous human genomic DNA
(as might be generated by a genome sequencing laboratory), the initial probability of
each state should be chosen proportionally to its estimated frequency in bulk human
genomic DNA. Because the sequences of the learning set are all centered on genes (and
typically contain little or no flanking intergenic DNA), they are not representative
of typical genomic fragments. However, by combining previously published estimates
of the total number of genes in the human genome and the total size of the genome
with estimates of the approximate proportions of DNA and of genes present in each
of the isochore compartments, it was possible to estimate the approximate proportion
of each of the type-D state types (intron, intergenic and so on) in genomic DNA for
each of the four C+G compositional groups described above. The final results of
these calculations and some of the intermediate values are listed in Table 3: a sample
calculation is given in the table legend. The specific assumptions made were that
the genome contains 65,000 genes (Fields et al., 1994), has a total size of 3,400 Mb
(Cavalier-Smith, 1985), and that the DNA amount and gene numbers are distributed

essentially as estimated in Mouchiroud et al. (1991) — see previous section.
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Table 3. Estimation of state initial probabilities

C+G% compositional group I IT I11 v
Bulk human genomic DNA

Estimated proportion of genome 62% 31% 3% 2%
Estimated DNA amount in genome (Mb) | 2,074 1,054 102 68
Estimated gene number 22,100 24,700 9,100 9,100

Estimated mean intergenic length (bp) 83,000 36,000 5,400 2,600
Estimated initial probabilities

Intergenic (N) 0.892  0.867 0.540 0.418
Intron (IF, IF, If, 15, I, I7) 0.095 0.103 0.33% 0.388
5" Untranslated region (F*, F7) 0.008 0.018 0.077 0.122
3" Untranslated region (7, 77) 0.005 0.011 0.045 0.072

Legend. The data in the upper portion of the table (see text) were used to estimate the initial
probabilities for each of the four type-D state types shown in the lower portion. The method
of calculation is illustrated below for group II sequences (43-51% C+G) — parameters for other
groups were estimated similarly. From Table 2, the observed proportion of single-exon genes in
group II sequences is 44/115 = 0.38: correcting for the “short gene bias” gives a revised proportion
of 0.19. Therefore, using the mean CDS lengths for single- and multi-exon genes from Table 2,
the total amount of coding DNA in this isochore is approximately 24,700 x (0.19 x 1,251 bp +
0.81 x 908 bp) = 24 Mb, leaving 1,054 — 24 = 1,030 Mb of non-coding DNA in this isochore. Using
the average intron length and number of introns per multi-exon gene from Table 2, approximately
0.81 x 24,700 x 4.9 x 1,086 bp = 106 Mb of this total is intronic. So, the proportion of group
IT non-coding DNA which is intronic is approximately 106 Mb / 1,030 Mb = 0.103. Similarly, the
amount of 5 UTR DNA in this isochore is estimated as 24, 700 x 769 bp = 19 Mb, and the estimated
3’ UTR amount is 24,700 x 457 bp = 11 Mb, yielding initial probabilities of 19/1,030 = 0.018 and
11/1,030 = 0.011, respectively. Finally, a total of 1,030 — (106 + 19 + 11) = 894 Mb is intergenic,
giving an average between-gene intergenic length of 894 Mb / 24,700 = 36 kb. Estimates for groups
IIT and IV, which correspond to subsets of the H3 isochore, were made assuming that approximately
60% of the DNA and one half of the genes in the H3 isochore belong to group IIT (51 - 57% C+G),
with the remainder in group IV (> 57%).
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Note that the differences in initial probabilities are quite dramatic with, for exam-
ple, the probability of hitting an intergenic region much higher in A+T rich sequences
than for C+G rich ones, and conversely for intron states. Since the coding strand
of the input sequence is assumed to be unknown a priori, the initial probabilities
of the strand-specific states are estimated symmetrically so that, for example, the
initial probabilities 7p+ and wp- for group II sequences are each estimated to be
0.018/2 = 0.009 (see Table 3). For the intron states, there is also the complication
of phase. Interestingly, the three intron phases are not represented equally in human
genes. The observed proportions in the learning set were: 41.5% (phase 0), 38.1%
(phase 1) and 20.4% (phase 2). Similar proportions have been observed in previous
studies of intron phase, e.g., Smith (1988), Fedorov et al. (1992), Long et al. (1995)
and Tomita et al. (1996). The initial probabilities of the states I;" (and I, ) were
estimated using these observed proportions in the obvious way, e.g., for group II

sequences, 7+ = 0.415 x 0.103/2 = 0.021 (see Table 3).

3.4 Transition probabilities

The biologically permissible state transitions are shown as arrows in Fig. 2. Certain
transitions are obligatory (e.g., P™ — F* T% — A%) and hence are assigned prob-
ability one: probabilities for all other transitions are estimated from the learning set
as follows. Since all of the genes in £ occur on the “forward” strand (i.e. the strand
of the GenBank sequence), all transition probabilities between forward-strand states
were assigned values equal to the observed frequency in the learning set (adjusted for
the “short gene bias” if appropriate). For example, the probability of an I — Ef
transition was set equal to the observed fraction of phase 2 introns which are followed
by terminal exons. Transitions between reverse-strand states were estimated in the
same way from an analogous set £~ constructed by taking the inverted complement
of each sequence of L: it can be easily checked that this results in a model which
is “strand-symmetric” in the sense that the product of the transition probabilities

corresponding to any particular gene structure will be the same whether the gene

occurs on the forward or reverse strand. The probabilities of the transitions N — Pt
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Table 4. Distribution of adjacent intron phases

3" intron
5" intron phase 0 phase 1 phase 2 | All phases
0O E 0 E O E 0O
phase 0 205 (177) 133 (151) 78 (88) 416
phase 1 141 (170) 168 (145) 89 (84) 398
phase 2 87 (86) 68 (73) 47 (43) 202
All phases | 433 369 214 1,016

X2 =174 (P < 0.005, 4 d.f.)

Legend. Phases of 1,016 pairs of adjacent introns from £: O indicates
observed count, E indicates expected count (product of marginals).

(“initiating” a forward-strand gene) and N — A~ (“initiating” a reverse-strand gene)
were set equal to % in order to preserve the strand-symmetry of the model, i.e. given
an arbitrary stretch of sequence, it is assumed that a gene is equally likely to be
encountered in the forward or reverse orientation.

The most interesting property observed in derivation of the transition probabilities
was that the phases of successive introns are correlated (this issue arises in derivation
of the E]'" — I and I;7 — E; transition probabilities). Table 4 shows the distri-
bution of the phases of adjacent intron pairs in the learning set, i.e. of the introns
immediately 5’ and 3’ to each internal exon. The x? test reveals significant depen-
dence between the phases of adjacent introns, consistent with the results of Long et
al. (1995) and Tomita et al. (1996). The reasons for this correlation are not entirely
clear, but it is worth noting that successive introns will have the same phase if and
only if the intervening exon has length which is a multiple of three, so that selection
might be acting on exons which have this potentially desireable property. This prop-
erty might be advantageous for regulation by alternative splicing in the sense that
an exon whose lengths is a multiple of three can be alternatively skipped or included

without disrupting the reading frames of the adjacent exons or could be important

for “exon shuffling” (e.g., Dorit & Gilbert, 1991).
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3.5 Length distributions

As discussed in the previous chapter, all type-D state are assumed to have geometric
length distributions, as would be expected if there are few or no functional constraints
on the lengths of these features. Since the mean, pu, of a geometric distribution is
related to the parameter, ¢, by the relation y = %, the parameter may be estimated
from an observed mean value simply as ¢ = % For the intergenic state, N, separate
geometric parameters were estimated for the four C+G% groups from the estimated
mean intergenic lengths in Table 3. Intron length parameters were estimated similarly
from the mean lengths in Table 2.* For the 5" and 3’ UTR states, the same parameter
was used for all four C+G groups (see legend to Table 2). The promoter and poly-

adenylation states have special length distributions which are discussed in Chapter 4.

3.5.1 Exon lengths

Since exon length distributions differ significantly for different types of exon (Fig. 1),
but do not appear to vary substantially between the C+G% compositional groups
(e.g., Table 2), it was considered preferable to derive separate distributions for each
exon type, but to pool exons from the four C+G groups in order to keep the sample
sizes as large as possible. Although the internal exon length distribution (Fig. lc)
looks a bit like a normal (Gaussian) density, the other types of exon (Figs. 1b, 1d)
have distributions unlike any standard statistical distribution. Nor is there any obvi-
ous reason to expect that they should, given the various types of potential constraints
on exon length discussed in Section 2.2.3. An alternative to using standard statistical
distributions such as the geometric or normal is to use an empirically-based distri-
bution, estimating the probability of observing each exon length directly from the
available data.

Since the number of exon lengths available from the learning set (238 initial,
1,016 internal, and 238 terminal exon lengths) is somewhat limited relative to the

set of possible exon lengths, the empirical distribution is fairly sparse and many

“Intron length is assumed to be independent of intron phase.
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possible lengths were missing (not observed). Of course, simply because no exons of
a particular length occurred in the learning set does not mean that the probability
of this length should be assumed to be zero: a more likely explanation is that the
length was missed simply because of normal sampling fluctuations. In other words,
the true distribution of lengths is likely to be much smoother than that derived from
a relatively small sample such as the learning set, raising the issue of whether there
might be a way in which the smooth underlying distribution can be approximated
from a relatively sparse sample. Consideration of a simple model for the evolution of
exon lengths leads to a fairly natural smoothing procedure described in the following
section. Of course, the simple goal of exon/gene prediction may not require this level
of attention to the details of exon lengths. However, the smoothing method described

here is fairly general and might be of some independent interest.

3.5.2 A model for exon length evolution

Lengths of coding exons most likely evolve by insertion or deletion of an integral
number of DNA triplets, since changing the length by a number of base pairs which
is not a multiple of three will change the reading frame and probably have severe
consequences at the protein level.® It is assumed for simplicity that at each position,
only single-codon insertions or deletions occur in a single generation (multiple-codon
changes at the same position are still allowed, but they must occur over multiple
generations) and that the probabilities per generation of insertion or deletion at any
given codon position have the same (extremely small) value p. Making the reasonable
assumption that Ap < 1 (e.g., A is typically on the order of 10* and p is probably
< 107?), so that the probability of insertion or deletion of multiple codons in an
exon in a single generation is negligible, an exon of length A codons will increase or
decrease in length by one codon with probability approximately Ap per generation.
It Xo = A is the initial length of the exon and X, its length after n generations

have elapsed, the sequence Xy, X;, ... will describe a special type of random walk® on

5More complex types of mutation, e.g., involving recombination, are not considered in the present
model, and selection acting on exon length is assumed to be absent.
5This model may also be framed as a branching (birth and death) process, e.g., Feller (1950),
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the positive integers (e.g., Karlin & McGregor, 1959), according to:

pm fn=m+lorn=m-—1
[10] P{Xpp1=n|Xpy=m}={ 1-2pm ifn=m
0 if [n —m|>1

It is easily seen” that F[Xyy1|Xy] = X for & > 0 (the martingale property), from
which it follows that E[X,] = Xo = A for all n. Furthermore, using the notation
V[Y] to represent the variance of a random variable Y, it is easily shown that the
conditional variance, V[Xy11|Xx] = E[(Xgt1 — E[Xi11])?|Xk] = 2pXi. Therefore,

the (unconditional) variance of X1 can be calculated as:

VIXin] = E[(Xes1—A)7]
= BIE[(Xikr1— V)X
= BE[(Xep — X+ Xk = A X, ]
= E[B[(Xpt1—Xi)* | X] + E[(Xe =) | X5] + 2E[( X1 — X5 ) (X = A) [ X5 ]
= E[2pX,+(Xp—2)?]
= 2p) + V[X;]

Since V[Xo] = 0, it follows that V[X,] = 2npA for n > 0, so the variance of the
position of the random walk increases linearly with time and, for fixed time, is pro-
portional to the initial position (i.e. the length of the exon at generation 0). Com-
puter simulations of this process show that for reasonable choices of A (e.g., 50) and
p (e.g., p = 1071?), after a moderately large number of generations the distribution
of lengths, though slightly asymmetric about the mean, becomes almost normal in
shape, as might be expected.

These observations may be applied to smooth an empirical length distribution

as follows. Assuming that most genes (and hence their component exons) evolve

Karlin & McGregor (1958).
7E[X] indicates the expected value of the random variable X; E[X|Y] indicates the conditional
expected value of X given Y.
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by duplication and subsequent divergence (many such examples are known, e.g., the
globin, tubulin and Hox families, etc.), and the number of generations n which have
elapsed since the duplication giving rise to a typical gene is on the order of or smaller
than 1/p ~ 10'°, then the ancestral exon giving rise to an observed exon of length A
codons will typically have a length within o = \/2npX (< \/ﬁ) of A. For example,
an observed exon of length 50 codons likely had an ancestral exon between 40 and 60
codons in length. Taking the learning set to represent a random sample of the genes
in the human genome, we can approximate the remaining genes in the genome which
are related to this set by at least a very distant common ancestral gene (probably
most genes) as follows. Consider each exon of £ not as a single example, but as
representing the whole family of exons which evolved from the same common ancestral
exon. By the arguments given above, the distribution of the lengths of these exons®

will typically be approximately normal with mean p ~ X and variance o? =~ 2,

leading to the following smoothing procedure.

3.5.3 Smoothing procedure for sparse length data

The observed length distribution for a particular exon type can be represented as a
vector, T = ny, Na, ..., Ny, where ny is the number of exons observed (possibly zero) of
length k codons (lengths are rounded up to the nearest whole number of codons) and
m is the maximum length observed. The total number of lengths observed is denoted
N =37, ng. The “empirical distribution” is the probability density which assigns
mass f = 3¢ to each point k = 1,...,m : the empirical distribution for terminal exon
lengths is shown by the solid vertical lines in Fig. 3. The smoothed distribution is
created by replacing the probability mass fi at position k by a “discretized” normal

2&(

density? with mean p = k and variance 0% = - C a positive constant), scaled so

8This model could, of course, be tested by examining the distribution of the lengths of the set of
corresponding exons from a group of homologous genes.

°A normal distribution may be made discrete by assigning to the integer j the mass f; derived
by integrating the normal density from j — 0.5 to j 4+ 0.5 (which may be conveniently calculated
on a computer using the “erf” function). In this context, the discretized normal is restricted to the
positive integers by setting the density equal to zero for all non-positive integers and appropriately
rescaling so that the total mass is not changed.
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that the total mass is fz. The resulting smoothed (normal mixture) distribution for
terminal exon lengths is shown (for C' = 1) by the dotted line in Fig. 3.

The previous section justified the replacement of an observed length £ by a normal
distribution of mean k and variance 2npk — here, it is assumed that the number of
elapsed generations is very large, so that ¢’ = np ~ 1. Division of this variance by
ny does not follow directly from the evolutionary model, but is a correction for the
reduction in variance which results from increased sample size. This additional factor
lends to the smoothed distribution two additional intuitively desireable properties
which would otherwise be lacking, namely: (i) the empirical distribution is smoothed
more in sparse areas of the length distribution and less in regions where the data is
more dense; and (ii) as the total number of samples increases, the smoothed distribu-
tion approximates more and more closely the empirical distribution. Of course, even
if the evolutionary model is not very realistic, the type of normal-based smoothing
described above may still be appropriate in the sense that the resulting smoothed
distribution resembles the curve that a reasonable person might draw by hand to

describe the data.

3.6 Composition of coding and non-coding DNA

A wide variety of compositional differences between coding and non-coding DNA have
been described in the literature, including differences in C+G content, oligonucleotide
content, periodic properties, local compositional complexity, and others (summarized
in Section 1.1). However, it is not immediately apparent which of these differences
are primary and which are simply consequences of other, more fundamental factors.
This issue was addressed by Fickett & Tung (1992), who compared more than twenty
different measures in terms of their ability to discriminate the coding or non-coding
character of sequence segments approximately 100 bp in length. The results were
that measures based on frame-specific hexamer composition (see below) were the
most discriminatory and that most of the other measures proposed are redundant
with respect to these measures in the sense that they reflect features (e.g., amino

acid usage, codon usage, di-amino acid usage, dinucleotide bias) which can be derived
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from the frame-specific hexamer composition.

The model of coding regions used here is an inhomogeneous 3-periodic fifth-order
Markov model (see Section 2.1), of the sort used by Borodovsky & McIninch (1993)
in the widely used GENMARK program for identification of genes in prokaryotic
genomes. In this approach, separate fifth-order Markov transition matrices, denoted
Cc, C® 0B are determined for hexamers ending at codon positions 1, 2 and 3,
respectively, so that the probability of generating the next base pair in the sequence
is conditional on the codon position as well as the identities of the previous five
nucleotides in the sequence. The three transition matrices thus capture biases in
dicodon usage (encompassing the lower-order biases in amino acid, di-amino acid and
synonymous codon usage), as well as biases in the frequencies of the two types of
out-of-frame hexamers in coding sequences.

Since each transition matrix C'9) has 4% = 4,096 entries, representing approxi-
mately 3,000 independent parameters, a large amount of sequence data is required to
reliably estimate these parameters. For this purpose, the coding regions of the genes
of the learning set were supplemented by a large set of complete cDNA sequences to
form the set L.,4ing, of more than 1,000,000 codons, as described in Section 3.1. Each
Markov transition probability is then set equal to its maximum likelihood estimate,
which is the corresponding conditional frequency from the set L..4in,. Since the size
of the data set is > 10° and the total number of independent parameters in the three
Markov matrices is < 10%, there is an average of more than 100 data points per pa-
rameter, which should be sufficient to give reasonably reliable estimates. Lower-order
3-periodic Markov models were also tried, but gave inferior results (data not shown)
— higher-order models are prohibited at present by lack of sufficient sequence data.

These matrices are used to model the codon positions of the exon states in the
natural way. For example, the first coding positions of an internal exon of phase
h =1 are modeled using matrices C?), C®) c® @ CG) . and so on until the
last coding base pair has been generated.!® This treatment of the coding portions

of multi-exon genes is essentially equivalent to the “in-frame scoring” plus “in-frame

10The description above does not apply to positions at the edges of the exon which are overlapped
by signal models (see Chapter 4).
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assembly” approach described by Wu (1996), which he has shown gives somewhat
better accuracy than alternative methods of coding region scoring/assembly, e.g.,
those used by GeneParser (Snyder & Stormo, 1995) and by the gene assembly option
of GRAIL II (Xu et al., 1994b).

The non-coding states ', T', N and [; are modeled using a homogeneous fifth-
order Markov matrix, D, with transition probabilities derived from the non-coding
portions of the genes in £ (a total of more than 2 Mb of DNA). Despite the presum-
ably much lower degree of selective pressure acting on non-coding sequences, strong
biases in hexamer composition nevertheless exist, many of which may reflect biases in
mutational or repair processes. For example, very high AAAAA — A and TTTTT —
T transition probabilities of 0.55 and 0.54, respectively, were observed in non-coding
regions, putatively because of a bias in polymerase slippage-induced mutation toward
extension of pre-existing runs of A or T bases (e.g., Schlotterer & Tautz, 1992). Other
transitions with unusually high frequency include GCCCG — G (0.66), GGCGT —
G (0.62) and CACGC — C (0.56), all related to hexamers present in consensus Alu
sequences (Jurka & Smith, 1988). At the other extreme, the greatest biases were seen
for the transitions TTTTC — G (0.023) and ATTTC — G (0.025), reflecting the
pronounced suppression of CG dinucleotides in vertebrate non-coding regions (e.g.,

Karlin & Burge, 1995), which reaches its greatest intensity in A+T rich regions.

3.6.1 Coding differential

The concept of “coding differential”, introduced below, provides a convenient way of
summarizing the way in which these models of coding and non-coding DNA contribute
to prediction. Letting C'W[S;] denote!! the probability of generating nucleotide S;
under the transition matrix C¥), the probability of generating the sequence segment
[a, b] as a phase h coding region (i.e. beginning in codon position h+1) can be written

as:

The dependence on the nucleotides S;j_5, Sj_4,Sj_3,Sj_2,Sj_1 is not made explicit in order to
simplify the notation.
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b—a
[11] P(h)(Sa,b) — H C((}H—i) m0d3+1)[5a+i]

=0

Similarly, letting D[S;] denote the probability of generating nucleotide S; from the
transition matrix D for non-coding regions, the probability of generating the segment
[a,b] under the non-coding sequence model is given by: PP(S,;) = [1:28 D[Sayi].
Recall (Section 2.10) that the critical quantity for prediction of the region [a, b] as an

. . . Py(S, .
exon or intron is the ratio, R = ij((s :)), where E represents a particular exon state

type, and [ the corresponding non-coding (e.g., intron) state type. If the portions

of this ratio which correspond to the splicing or translational signals are omitted, we
. . . (R) .

are left with the “coding ratio”, r = %;::)), where h is the phase of the exon!? or,

equivalently, the “coding score”, s = log,(r). If the sequence contains n coding exons

of lengths Ay, ..., A,, whose coding scores are si, ..., s,, the average coding score per
n

coding base pair, p¢, is given by pe = Efli"‘. If AV denotes the set of non-coding

i=1""

nucleotide positions in the sequence, then the average coding score per non-coding

base pair, pp, is defined by:

C®)1S]
D[S;] )]

O[S s,

: ip = log, logy(—=—===) + log,
[12] ' %[ g gy )+ 108l ) + log,(

Lo | —

: D[Si]

Note that the coding score is averaged over the three possible reading frames for
non-coding sequence positions.

The “coding differential”, A, is defined as A = p¢ — pp, i.e. the difference in
coding score per base pair for coding vs non-coding regions of the sequence. This
measure provides a convenient gauge of how well the sequence generating models
are able to distinguish coding from non-coding regions. For example, if A = 0 for

a sequence, then on the whole the coding/non-coding sequence generating models

12Initial exons are assigned phase zero: terminal exons are assigned the phase of the previous
intron state.
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provide no help in distinguishing exons from introns, while if A < 0, then these models
actually tend to misclassify exons as introns and vice versa. On the other hand, if
the coding differentials A; and A, of two sequences differ with, say, Ay > Ay > 0,
then on average the model is better able to distinguish coding from non-coding DNA
in sequence 1 than in sequence 2.

Figure 4 shows the relation between coding differential and C+G% content for the
380 genes of L. Two features stand out. First, as one would hope, A is nearly always
positive (only two of 380 sequences have negative values), meaning that hexamer
composition almost always helps to distinguish coding from non-coding regions of a
gene. Secondly, coding differential is significantly positively associated with C+G%
content, as measured by a Pearson (product-moment) correlation coefficient of p =
0.44 (P < 0.01). This association is also seen by comparing the mean A values of
0.130, 0.164, 0.184, and 0.197, for groups I, II, IIT and IV, respectively. In particular,
the A value for group I genes stands out as substantially lower than the others. This
phenomenon may in part explain the observation that gene prediction programs,
many of which make use of differences in hexamer composition or related functionals,
tend to perform less well on A4T rich sequences (e.g., Xu et al., 1994a; Lopez et al.,
1994; Snyder & Stormo, 1995).

A possible explanation for the lower coding differential values in A+T rich se-
quences is that the set £.,4in, from which the C) matrices were derived (and the set
L from which the D matrix was derived) are heavily biased toward C+G rich genes
(e.g., Section 3.2). One way to counteract such a bias might be to construct new
matrices specifically for group I sequences, derived from the coding and non-coding
portions of A+T rich genes only. Therefore, a new fifth-order Markov transition ma-
trix Dy was derived using only the group I sequences from £ (totaling more than 700
kb of genomic DNA), and new coding matrices, C}i) (1 < ¢ < 3) were derived from
the set ,Cgodmg, constructed as described below.

Figure 5 shows the relationship between the C+G% content of the CDS (coding
sequence) vs that of the genomic sequence for the genes of £: note the very strong
correlation (p = 0.85) and the tendency for the C+G% of the CDS to be about
5% higher than that of the corresponding genomic region (mean difference: 4.15%).
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Specifically, in 75% of cases (96/380), the genomic sequence corresponding to a CDS
of C+G% content  had C+G% content in the range [z-10,z]. As a consequence,
cDNAs can be categorized into appropriate genomic C+G% compositional groups
with reasonable reliability simply by subtracting 5% from the observed C+G content
of the cDNA. The set £!

coding

group I genes (< 43% genomic C4+QG) of £ with the cDNA sequences of less than 48%

was constructed by combining the coding regions of the

(=43 4+ 5) C+G from the set L.pnya. This subset, comprising 638 complete coding
sequences, totaled approximately 380,000 codons.

The effect of using the coding/non-coding matrices C}i), Dy on the coding dif-
ferentials of group I genes is illustrated in Fig. 6. The coding differential increases
in 53/65 (82%) of the genes of group I, and the mean value increases from 0.130 to
0.143, a 10% increase, suggesting that these group I-specific matrices should provide
somewhat better prediction in A+T rich sequences. Performance of GENSCAN using
group I-specific vs overall matrices is compared in Section 5.3.2. Derivation of coding
and non-coding matrices specifically for other C+G% compositional groups did not

result in improved performance (data not shown).
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Fig. 5. Genomic C+G% vs CDS C+G% for genes of learning set
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Fig. 6. Effect of group I-specific matrices on coding differential

0.4 T T -
Overall matrices ©
Group I-specific matrices+
0.3 i
+
+
o + +
= + o 4 ot
2 02+ + o +o £ b
c
o + " ¢ ¢ s oo
(] & S o + o+
£ T + P o+ o Pk
S ? 4o g o+ o % N +p+$ o
>+
E’ N4 < & + 0& <>Jr o @ o0 @ 2;
k] Lo T go +
8 0.1} o e o -
4
> o
$
+
&
0.0
¢
_0.1 1 1
30 35 40 45

C+G% content of GenBank sequence
Legend. Data for 65 group | genes of GENSCAN learning set (Appendix A).



Chapter 4

BIOLOGICAL SIGNALS

This chapter describes the biological signal models which were constructed, focusing
primarily on signals related to pre-mRNA splicing. These signals are undoubtedly the
most important elements for accurate prediction of exon boundaries, since all exons
begin and/or end with such sites. Section 4.1 briefly reviews current knowledge of the
mechanism of constitutive pre-mRNA splicing. The next section discusses models of
biological signals in general and the acceptor/branch point signal in particular, intro-
duces a new model for this element, and compares it to two types of models described
previously. Section 4.3 discusses the dependencies which exist between positions in
donor splice signals and how a new type of model was developed which accounts
for many of the most significant of these dependencies. Again, the discriminatory
power of this model is compared to models used previously. Finally, the last section
discusses transcriptional and translational signals, for which relatively simple models

were employed.

4.1 Pre-mRNA splicing

Introns are removed from eukaryotic pre-mRNAs in the nucleus by a complex process
catalyzed by a 60S particle known as the spliceosome (e.g., Green, 1991). The spliceo-
some is composed of five small nuclear RNAs (snRNAs) called Ul, U2, U4, U5 and

U6, and numerous protein factors. Splice site recognition and spliceosomal assembly

99
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occur simultaneously according to a complex sequence of steps outlined below.! The
first step appears to be recognition of the donor (5) splice site at the exon/intron
junction: a substantial amount of genetic (e.g., Zhuang & Weiner, 1986, Siliciano
& Guthrie, 1988) and biochemical evidence (Heinrichs et al., 1990) has established
that this occurs primarily through base pairing with the Ul snRNA over a stretch of
approximately nine nucleotides encompassing the last three exonic nucleotides and
the first six nucleotides of the intron. The second step in spliceosomal assembly in-
volves recognition of the branch point/acceptor site. This process is more complex,
involving binding of U2 auxiliary factor (U2AF) and possibly other proteins to the
pyrimidine-rich region immediately upstream of the acceptor site, which directs U2
snRNA binding to the branch point sequence approximately 20 to 40 bp upstream
of the intron/exon junction (Green, 1991). The U2 snRNA sequence 3" GGTG 5
has been shown to base pair with the branch point signal, consensus 5 YYRAY 3/,
with the unpaired branch point adenosine bulged out of the RNA duplex (Query et
al., 1994). Subsequently, a particle containing U4, U5 and U6 snRNAs is added, U5
snRNA possibly interacting with the acceptor site, leading eventually to formation of
the mature spliceosome (Konarska & Sharp, 1987).

Splicing itself occurs by two sequential transesterification reactions. First, an
unusual 2’-5" phosphodiester bond (RNA branch) is formed between the 2’ hydroxyl
of an adenosine (A) near the 3’ end of the intron (the branch point) and the guanosine
(G) at the 5’ end of the intron, resulting in cleavage at the 5 or donor splice site
(exon/intron junction). In the second step, the 3’ or acceptor splice site (intron/exon
junction) is cleaved and the two exons are ligated together, causing the intron to
be released as an “RNA lariat” which is rapidly degraded in vivo. After all introns
have been removed, the resulting processed mRNA is exported to the cytoplasm
for translation. Despite fairly extensive knowledge of the factors involved in splice
site recognition (e.g., McKeown, 1993), the precise mechanisms by which the proper
splice sites are distinguished from similar or identical “pseudo-sites” nearby is not

well understood.

1Two of the most comprehensive reviews of pre-mRNA splicing are Moore et al. (1993) and Green
(1991); see also McKeown (1992) for a review of alternative splicing.
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Table 5. Base composition around intron/exon junctions

a. Branch point region, [—38, —21]

Pos -38 -37 -36 -35 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21

A% 22 20 22 24 21 21 20 22 23 22 21 21 22 23 21 23 20 20
G% 25 26 25 22 23 22 22 21 23 20 20 18 20 16 17 18 17 16
C% 28 28 26 28 28 29 29 29 29 30 30 31 30 31 30 29 31 34
T% 26 27 26 26 28 28 29 28 25 28 28 30 28 31 33 30 32 30
Y% 54 54 52 55 56 57 57 57 55 58 59 61 58 61 63 59 63 64

b. Pyrimidine-rich region, [—20, —5]

Pos -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 6 -5
A% 20 16 15 14 14 12 9 9 8 8 8 8 8 9 6 7
G% 16 18 18 18 15 12 13 13 12 12 13 13 12 10 6 6
C% 31 32 32 31 35 37 35 34 34 33 33 38 41 41 44 38
T% 34 33 35 37 35 39 42 45 46 47 46 42 39 41 44 48
Y% 65 66 66 68 71 76 78 79 80 80 80 80 80 82 88 87

c. Acceptor site region, [—4, 43|

Pos 4 3 1 +2  +8
A% 22 & 10 25 25 27
G% 22 0 10 52 22 24

C% 33 74
T% 22 21

1
0
0
0 13 21 27
0
Y% 55 96 0

9 32 23
23 53 50

Legend. Compositional data for 1,254 acceptor sites from the 238 multi-exon genes of the
learning set (Appendix A). The letter Y indicates either pyrimidine nucleotide (C or T).

4.2 The acceptor / branch point signal

Table 5 displays the base composition at specific positions relative to the intron/exon
junction for the 1,254 acceptor splice sites of the learning set. Intron positions are
labeled —38, —37, ... up to —1 for the last intron nucleotide: exon positions are labeled
+1,42,43. These positions divide fairly naturally into three regions. First, the region
[—38, —21] in which the branch point adenosine typically resides is characterized by
nearly random (equal) usage of the four nucleotide types, with a weak bias toward
pyrimidines (Y = C or T). Second, the region [—20, —5] where U2AF typically binds,
is characterized by a pronounced bias toward pyrimidine nucleotides, which increases
almost monotonically from 65 to almost 90% immediately upstream of the acceptor
site. Third, the region [—4, 43] near the acceptor splice site itself, which is thought
to interact with U5 snRNA, Ul snRNA and possibly other factors, displays the motif
CAGG, flanked by less conserved positions on either side. Such compositional biases
at the acceptor site were first noticed by Breathnach & Chambon (1981) and first
systematically tabulated by Mount (1982).
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4.2.1 Weight matrix models and generalizations

Numerous models of biological signal sequences such as donor and acceptor splice
sites, promoters, etc. have been constructed in the past ten years or so (reviewed
in Gelfand, 1995). One of the earliest and most influential approaches to modeling
the acceptor splice signal and other biological signals has been the weight matrix
method (WMM) introduced by Staden (1984) (but see also Stormo et al., 1982 where
a similar idea was introduced). In this approach, nucleotides in a signal of length A
are assumed to be generated independently according to position-specific probability
distributions. Under such a model, the probability of generating a particular sequence
X = 21,23, ..., under the signal model, “+”, is given by: P{X|+} = P (X) =
[T, p8), where 50

signal, which is typically estimated from the positional frequency f](Z) observed in a

is the probability of generating nucleotide j at position 2 of the

set of aligned signal sequences as in Table 5. Typically, an analogous negative model,
“~7_ corresponding to non-sites is also derived from a set of “pseudo-sites”. The
probability of generating the sequence X under the negative model will be written
P{X|—} or Py (X). Sites may then be discriminated from non-sites by the “signal
ratio”, rwarm = Py (X)) Piarar(X) or the “signal score”, swary = log, (rwara)-
A natural generalization of this method, termed weight array model (WAM),
was applied by Zhang & Marr (1993) to model the donor splice signal in the yeast
Schizosaccharomyces pombe. The WAM model is essentially an inhomogeneous first-
order Markov model (Section 2.1) which differs from the WMM model in that it allows
for dependencies between adjacent positions. Under this model, the probability of
generating the sequence X is: Pr{X|+} = P (X) = pW T, plizh)., where
pg-fk_l’i) is the conditional probability of generating nucleotide & at position ¢, given
nucleotide j at position i — 1. This quantity is typically estimated from the ratio
(i~ 1 ) /f i-1) , where f] k )is the frequency of the dinucleotide j, k at positions t—1,2
of the signal. An analogous negative model may again be constructed from non-sites:
such a model will capture essentially the adjacent nucleotide biases in bulk genomic
DNA. Signal ratios and scores may be defined for the WAM model as above.
Both WMM and WAM models of the pyrimidine-rich / acceptor region [—20, +3]

were constructed from the acceptor sites of £. These models were then tested on a
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disjoint set of 65 human genes, the GENSCAN test set 7, described in Appendix B.
All segments of length 23 containing the requisite AG dinucleotide at positions —2, —1
were scored (segments lacking this AG have probability zero under both models and
so need not be considered). The distributions of scores for the true and false splice
sites in these sequences under these two models are shown in Fig. Ta,b. Comparison
of these two figures shows that the WAM model gives clearly superior separation
between true and false sites (see also Table 7). What additional features of the signal
does the WAM model capture? The differences are most easily seen by comparing

the signal ratios for the two models:

Pl (X)) P (X) A
13 s = i 1 10
PWAM(X) PWMM X) H i—1,Ti i1
f(z 1,4)
where T( ) —1,7 W is the “positional odds ratio” of the dinucleotide j, & ending

at position ¢ of the signal and rg(ji) is the corresponding ratio for non-sites, which

—1,%q

will be essentially equal to the “global odds ratio” for the dinucleotide j, & in bulk
genomic DNA (e.g., Karlin & Burge, 1995).

4.2.2 Positional odds ratios

Figure 8a shows the positional odds ratios in the branch point/pyrimidine-rich region
for all YR and YY dinucleotides (R = A or G), compared to the corresponding global
odds ratios (dashed lines) for the genes of the GENSCAN learning set. Several fea-
tures are of note. First, though many dinucleotides exhibit biases (positional odds
ratios different from one), most of these ratios are quite similar to those observed
globally in genomic DNA. For example, the CG dinucleotide exhibits very strong
negative biases, with odds ratios in the range of approximately 0.25 to 0.45, but this
range is centered on the typical global value of 0.36. Thus, it appears that the dinu-
cleotide odds ratios are in some way an intrinsic property of the genome or “genomic
signature” (Karlin & Burge, 1995), which tend to gravitate toward typical genomic

values even in the presence of fairly strong selective pressures (i.e. the presumably
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Legend. Data for sites in genes of GENSCAN test set (Appendix B).
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strong selection for pyrimidines in the region [—20, —5]). The only doublet in this fig-
ure which exhibits positional odds ratios consistently different from the global value
is TG, with ratios typically in the range of 1.4 to 1.6, higher than the global average
value of 1.19 — the reason for this excess of TG dinucleotides is not immediately
apparent.

The positional odds ratios for the RR and RY dinucleotides are displayed in
Fig. 8b. Interestingly, three of the four RR doublets exhibit fairly dramatic over- or
under-representation relative to their typical genomic values in the region [—20, —5]
(but not in the branch point region). In particular, the AG doublet is dramatically
avoided in this region. To appreciate just how low the frequency of AG is in this
region, note (Table 5) that the product fif_l)fg) is typically around 0.01 (1%) in this
region, so that the positional odds ratios of 0.0 to 0.4 observed for AG over much
of this region imply that its frequency is not more than 0.004 (0.4%), i.e. almost
completely absent (see also Senapathy et al., 1990). The strength of this avoidance
suggests that occurrence of an AG in the region [—20, —5] might be extremely dele-
terious for splicing. The most likely explanation is that, at the time of acceptor
site definition, the splicing machinery chooses the first available AG site downstream
(3') of the branch point so that presence of an AG in the region [—20, —5] will lead
to incorrect acceptor site choice, with probably serious consequences for the trans-
lation product of the incorrectly spliced mRNA. There is a significant amount of
experimental evidence in support of this idea (e.g., Reed, 1989, Smith et al., 1989,
Zhuang & Weiner, 1990). Thus, while both the WMM and WAM models capture
the bias toward pyrimidine nucleotides in [—20, —5] and the preferred pattern CAGG
at [—3,41], the improved discrimination observed for the WAM model apparently
relates to its ability to capture the biases away from AG and towards AA, GG and

TG dinucleotides in the pyrimidine-rich region.

4.2.3 The branch point region

Interestingly, the branch point region [—38, —21] exhibits very few biases in terms of
nucleotide (Table 5) or dinucleotide composition (Figs. 8a,b) and, as expected, WMM

and WAM models encompassing this region give little or no extra discriminatory
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power (data not shown). This lack of positional bias is presumably due at least in
part to the variable position of the branch point signal in this region. One approach
toward modeling this signal would be to locate and align the branch point signals
from each sequence, as was done for the acceptor site. However, this approach is
not feasible in practice since branch points are almost never annotated in GenBank
sequences (because sequencing laboratories very rarely perform the extra experiments
required to localize the branch point). Nor is searching for the branch point consensus,
YYRAY, a reliable way of locating branch points, e.g., Harris & Senapathy (1990)
found only a very weak tendency toward the branch point consensus in this region.
Consistent with these findings, only 30% of the introns in the set £ contained a
YYRAY pentamer in the appropriate region, [—40, —21]. Thus, any model which
required the presence of even such a weak consensus pattern would tend to miss most
true sites.

How then to proceed? One approach would be to develop a higher-order WAM
model capturing second-order (triplet), third-order (tetramer), or even fourth-order
(pentamer) biases at particular positions in the branch point region. While such a
model might work in principle, serious problems arise in estimating the increased
number of parameters in such models. For example, construction of even a second-
order model requires estimation of four transition probabilities conditional on each
doublet at each position. For the set of 1,254 acceptor sequences from L, most
doublets occur about n = 1,254/16 = 78 times per position and some doublets occur
significantly less often, e.g., TA occurs about 0.71 x 78 = 55 times per position
(Fig. 8a) and CG has even lower counts. Unfortunately, this is not sufficient data to

reliably estimate model parameters, as is discussed below.

4.2.4 Parameter estimation error

If a sample of size n is randomly chosen from a large population (of sequences),

then the count n; of nucleotide 2 will be distributed binomially, with mean u; = np;

and variance o? = np;(1 — p;), where p; is the (true) frequency of nucleotide ¢ in

the original population. Therefore, the typical estimation error made in using the
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Table 6. Estimation error versus frequency and sample size: £ = 1/%

Sample size, n

Di 30 50 100 175 300 500 1000
0.50 | 18.3% 14.1% 10.0% 7.6% 58% 4.5% 3.2%
0.25 | 31.6% 24.5% 17.3% 13.1% 10.0% 7.7%  5.5%
0.15 | 43.5% 33.7% 23.8% 18.0% 13.7% 10.6% 7.5%
0.10 | 54.8% 42.4% 30.0% 22.7% 17.3% 13.4% 9.5%

Legend. Parameter estimation error was calculated as described in text.

observed fraction f; = ™ to estimate p; will be on the order of E; = % = \/lp_i—?.
In particular, the error increases with decreasing p; but decreases (of course) with
increasing sample size, n. Values of this error measure for typical ranges of p; and n
are given in Table 6. Thus, estimation errors are quite large for small sample sizes
(e.g., n = 30 to 50 or less), but become tolerable (in the range of 10 to 20% or so) at
around n = 175 to 300, depending on the value of p;. In particular, insufficient data

is available to derive a reliable WAM model of order two or higher.

4.2.5 A windowed weight array model

In order to have enough data to describe potential higher-order biases, the approach
I chose was to pool data from a “window” of adjacent signal positions, constructing
what might be termed a “windowed weight array model” (WWAM). A second-order
WWAM was therefore constructed in which data from positions ¢ — 2, ¢ — 1,2, ¢ + 1
and ? + 2 were averaged to give the second-order Markov transition probabilities
at position z for —38 < ¢ < —21. This averaging resulted in typical sample sizes
of n =5 x 1,254/16 = 392 per position, which should be sufficient to give reliable
parameter estimates (see Table 6). An analogous negative model was also constructed.
The score distribution observed for the model derived by combining this branch point
WWAM with the WAM derived previously for positions [—21, +3] is shown in Fig. 7c.
Further improvement in discrimination is clearly apparent relative to the other two

models.
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Table 7. Specificity vs sensitivity for acceptor splice signal models

Sensitivity level
Model 20% 50% 90% 95%
FP Sp | FP Sp FP Sp FP Sp
WMM 68 50.7% | 629 21.6% | 3,983 T7.1% | 6,564 4.7%
WAM 65 51.5% | 392 30.9% | 3,322 8.4% | 5,493 5.5%
WWAM | 48 58.6% | 343 33.8% | 3,170 8.8% | 5,397 5.6%

Legend. Data for genes of the GENSCAN test set (Appendix B).

A somewhat more systematic way to compare the discriminatory power of the
three models is to compare the number of “false positives” (FP) observed at several
levels of sensitivity. For a particular sensitivity level p, the score threshold s, is chosen
as the minimum score for which at least p% of true sites have score > s,. Thus, the
number of true positives (TP) at this level is approximately pN, where N is the total
number of true sites. The number of false sites with score > s, is then determined:
improved discrimination corresponds to fewer false positives at a given sensitivity
level. Discriminative power is typically measured by either the total number (or
percentage) of false positives (FP) or by the specificity, Sp = TP/(T P + F P), at the
given sensitivity threshold. These values are tabulated for the three models at selected
sensitivity levels in Table 7. The test set 7, of total length 600,104 bp, contains a
total of N = 338 true acceptor sites. Notably, the WWAM model gives consistently
lower numbers of false positives (and higher levels of specificity) at each sensitivity
level than the WMM or WAM models. A third-order WWAM in which data from
the entire branch point region [—40, —21] were used to estimate third-order transition
probabilities for all positions in the range —40 < ¢ < —21 was also constructed, as
well as several other variations on this theme, but none gave improvement over the
second-order WWAM described above.

What accounts for the improved discrimination of the WWAM branch point /
acceptor model? Though the patterns of trinucleotide biases in this region are fairly

complex, one way to detect triplets which may be particularly favored or disfavored
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is to consider the “triplet positional odds ratio”,

f(i—2,i—1) f(i—l,i) f(i—Q,i—l,i)flgi—l)

I7y y72 I7y72

[14] T(z) — f(i—Q,i—l,i) / féi_Q) — = — —— o
A R

I7y72 I‘7y72

i.e. the ratio of the frequency of the triplet z,y, z ending at position z to its expected
frequency under the first-order WAM model. Though such triplet odds ratios fluctuate
more than the corresponding dinucleotide ratios (due to smaller sample sizes) and are
difficult to evaluate individually, significant deviations which persist across the branch
point region can be detected by analyzing the signs of the differences d; = T;Z?yz -1
for a particular triplet. Specifically, for four out of the 64 possible triplets, CAG,
CTG, TAA and TTT, all 20 d; values in the range [—40, —21] were positive. For five
triplets, CAA, CTA, CTT, TAG and TTG, all d; were negative in this range. This
consistency is highly statistically significant by the sign test, even considering that
64 tests were performed, since 2720 < 107°. The favored triplets CTG and TAA are
probably related to the branch point itself, forming portions of the YYRAY consensus.
The CAG triplet might represent an alternative branch point pattern, YYRRY or
YYARY, since under certain circumstances either of the purine nucleotide positions
in the branch signal are capable of acting as the branch nucleophile (Query et al.,
1994). The TTT triplet may represent a subclass of acceptor sites whose pyrimidine-
rich tracts are longer or more distally located than usual. Notably, all of the avoided
triplets are a single transition mutation away from at least one favored triplet.

Of course, none of the models considered above treats the possibility of longer-
range interactions, e.g., between the pyrimidine-rich region and the bases around the
acceptor site. One way to measure such biases would be to perform y? tests between
the variables X; and X (indicating the nucleotides at positions ¢ and j of the acceptor
site) for different 7, j pairs. However, in many cases the contingency table expected
values become too small (e.g., less than 10) for such tests to be reliable. Therefore, a
more robust approach is to test the independence of the consensus indicator C; (1 if
the nucleotide at position ¢ matches the consensus at ¢, 0 otherwise) and the variable
X;. Such tests were performed between the indicators C_3 (consensus: C) and C44

(consensus: ) and the set of nucleotide variables X;, —19 < j < —5. Most of the



CHAPTER 4. BIOLOGICAL SIGNALS 72

positions in this range were found to be strongly dependent on the variable C'_3, but
independent of C'y; (data not shown). Closer scrutiny of the data showed that this
dependence is primarily the result of a positive association between usage of T at
position -3 and increased T vs C usage in the pyrimidine-rich region. Partitioning
the genes according to C+G content (as in Chapter 3) caused these dependencies
to largely disappear, suggesting that the dependence is primarily due to mutational
forces acting differentially on different C+G% compositional regions of the genome
rather than on factors directly related to splicing. For this reason, further models

accounting for these dependencies were not developed.

4.3 The donor splice signal

The donor splice signal comprises the last 3 exonic nucleotides (positions —3 to —1)
and the first 6 nucleotides of the succeeding intron (positions +1 through +6), with
consensus? sequence [c/a]AGGT[a/g]AGt. The GT dinucleotide at positions +1,
+2 is essentially invariant, with only a small number of exceptions known.®> Most
previous probabilistic models of these sites have assumed either independence between
positions, e.g., the WMM model of Staden (1984) or dependencies between adjacent
positions only, e.g., the WAM model of Zhang & Marr (1993). However, highly
significant dependencies exist between non-adjacent as well as adjacent positions in
the donor splice signal (see below), which are not adequately accounted for by such
models and which likely relate to details of donor splice site recognition by Ul snRNP
and possibly other factors. For the reasons indicated in the previous section, I focused
on dependencies between the consensus indicator C; and nucleotide variable X, rather
than on X; vs X; comparisons.

Table 8 shows the y? statistics for the variables C; vs X; for all pairs ¢,j with
i # j in the set of donor sites from the genes of the learning set (positions +1 and +2
are omitted since they do not exhibit variability in this data set). Strikingly, almost
three fourths (31/42) of the i, j pairs exhibit significant x* values even at the relatively

2Uppercase letters indicate nucleotides with frequency > 50% — see Fig. 9.
3Donor sites lacking the GT are not considered by the model.
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Table 8. Dependencies between positions in human donor splice sites:
x? statistic for consensus indicator C; vs nucleotide X;.

Pos. Position j

7 Consensus -3 -2 -1 +3 +4 +5 +6 Sum
-3 C/a — 61.8 14.9 5.8 20.2 11.2 18.0 131.8
-2 A 115.6 — 40.5 || 20.3 57.5 59.7 42.9 336.5
—1 G 15.4 82.8 — || 13.0 61.5 41.4 96.6 310.8
+3 a/g 8.6 17.5 13.1 — 19.3 1.8 0.1 60.5
+4 A 21.8 56.0 62.1 || 64.1 — b6.8 0.2 260.9
+5 G 11.6 60.1 41.9 | 93.6 146.6 — 33.6 | *387.3
+6 t 22.2 40.7 103.8 || 26.5 17.8 32.6 — | 243.6

Legend. For each pair of positions {¢,57} with ¢ # j, a 2 X 4 contingency table was
constructed for the consensus indicator variable C; (see text) vs the variable X; identifying
the nucleotide at position j. The consensus nucleotide(s) at each position ¢ are shown in
the second column: the invariant positions +1,+2 are omitted. For each contingency table,
the value of the y? statistic was calculated and is listed in the table above. Those values
exceeding 16.3 (P < 0.001, 3 df) are displayed in boldface. The last column in the table
lists the sum of the values in each row, which is a measure of the dependence between C;
and the vector Z; of the nucleotides at the six remaining positions j # i. All values exceeded
42.3 (P < 0.001, 18 df) and so are displayed in boldface: the largest value, for G at position
+5, is indicated by *.
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stringent level of P < 0.001, indicating a great deal of dependence between positions
in the donor splice site. (The stringent P-value cutoff was used to compensate for
the effect of multiple comparisons.) It is also noteworthy and perhaps surprising that
many non-adjacent pairs of positions as well as most adjacent pairs exhibit significant
dependence, e.g., positions -1 and +6, separated by 5 intervening nucleotides, exhibit
the extremely high x? values of 103.8 for Cs vs X_; and 96.6 for C_; vs Xg. In order
to account for such dependencies in a natural way, a new model-building procedure

was developed.

4.3.1 Maximal dependence decomposition (MDD)

The goal of the MDD procedure is to generate, from an aligned set of signal se-
quences of moderate to large size (i.e. at least several hundred or more sequences), a
model which captures the most significant dependencies between positions (allowing
for non-adjacent as well as adjacent dependencies), essentially by replacing uncon-
ditional WMM probabilities by appropriate conditional probabilities provided that
sufficient data is available to do so reliably. Given a data set D consisting of n
aligned sequences of length A, the first step is to assign a consensus nucleotide or
nucleotides at each position. For each pair of positions, the y? statistic is calculated
for C; vs X; (as above) for each ¢, pair with ¢ # j. If no significant dependencies
are detected (for an appropriate P-value), then a simple WMM should be sufficient.
If significant dependencies are detected, but they are exclusively or predominantly
between adjacent positions, then a WAM model may be appropriate.

If, however, there are strong dependencies between non-adjacent as well as ad-
jacent positions (as was observed Table 8), then the following procedure is carried

out.

1) Calculate, for each position i, the sum S; = Y-.; x*(Ci, X;), which is a measure
of the amount of dependence between the variable C; and the nucleotides at the

remaining positions of the site (the row sums in Table 8).

2) Choose the value ¢; such that S;; is maximal and partition D into two subsets:

D

i, all sequences which have the consensus nucleotide(s) at position #;; and
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Di (= D\ D;,), all sequences which do not.

Now repeat steps 1) and 2) on the subsets, D;, and D;- and on subsets thereof, and
so on, yielding a binary subdivision “tree” with (at most) A — 1 levels (see Fig. 9).
This process of subdivision is carried out successively on each branch of the tree until

one of the following three conditions occurs:

(i) The (A —1)’th level of the tree is reached (so that further subdivision is impos-
sible);

(ii) No significant dependencies between positions in a subset are detected (so that

further subdivision is not indicated); or

(iii) The number of sequences remaining in a subset falls below a preset minimum
value m so that reliable WMM frequencies could not be determined after further

subdivision.

Finally, separate WMM models are derived for each subset of the tree, and these are
combined to form a composite model as described below.

Figure 9 illustrates the MDD procedure applied to the set of 1,254 donor splice
sites from £. The initial subdivision is made based on the consensus (G) at position
5 of the donor signal (see Table 8), resulting in subsets G5 and Hs (H meaning A,
C or U) containing 1,057 and 197 sequences, respectively. Based on the data of
Table 6, the value m = 175 was chosen as a reaonable minimum sample size (giving
typical parameter estimation errors in the range of 7 to 23%), so the set Hs is not
further divided. The subset G is sufficiently large, however, and exhibits significant
dependence between positions (data not shown), so it is further subdivided according
to the consensus (G) at position —1, yielding subsets G5G_; and G5H_1, and so on.

The composite model for generation of signal sequences is then essentially a reca-
pitulation of the subdivision procedure, as described below for the particular case of

the donor signal.
0) The (invariant) nucleotides X; and X, are generated.

1) X5 is generated from the original WMM for all donor sites combined.
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Fig. 9. Maximal dependence decomposition model of human donor splice signal

All donor splice site

1254
Pos A% C% G% U% ( ) Pos A% C% G% U%

-3 33 36 19 13 -3 35 44 16
-2 85 4 7

6
2 56 15 15 15 5
1 9 4 78 Gg Hg -1 2 1 97 0
+3 44 3 51 (1057) (197) +3 81 3 15 2
2
8

O W o

+4 75 4 13 +4 51 28 9 1
+6 14 18 19 49 l \ +6 22 20 30 2
-3 34 37 18 11 -3 29 31 21 18
2 59 10 15 16 G5G.1 GgH-1 2 43 30 17 11
+3 40 4 53 3 (823) (234) +3 56 0 43 0
+4 70 4 16 10 ¢ \ +4 93 2 3 3

+6 17 21 21 42 +6 5 10 10 76

-3 37 42 18 -3 20 30 18 23
+3 39 5 51 5 G5G-1A-2 G5G-1B-2 +3 42 1 56 1
+4 62 5 22 11 (487) (336) +4 80 4 8 8

+6 19 20 25 36 +6 14 21 16 49

3 32 40 23 3 39 43 15 2
3 27 4 59 10 656-1A-2U6 (356-1A-2\ﬁ 3 46 6 46 3

w

)]

+4 51 5 25 19 (177) (310) +4 69 5 20 7

All sites: Position
Base -3 -2 -1 +1 +2 +3 +4 +5 +6

A% 33 60 8 0 0 49 71 6 15
C% 37 13 4 0 0 3 7 5 19
G% 18 14 81 100 0 45 12 84 20
U% 12 13 7 0 100 3 9 5 46

Ul snRNA: 3 G U C C A U U C A 5'

Legend. Subclassification of the donor sites of the learning set by the MDD procedure is illustrated. Each box
represents a subset of donor sites corresponding to a pattern of matches/mismatches to the consensus

nucleotide(s) at a set of positions, e@G.1 is the set of donors with G at positions +5 and -1. H indicates A,

C or U; B indicates C, G or U; and V indicates A, C or G. The number of sites in each subset is given in
parentheses. The frequencies (percentages) of the four nucleotides at each variable position are indicated for
each subset immediately adjacent to the corresponding box. Data for the entire set of 1254 donor sites are
given at the bottom of the figure: frequencies of consensus nucleotides are shown in boldface. The sequence
near the 5' end of U1 snRNA which has been shown to base-pair with the donor site is shown below in 3' to 5'

orientation.



CHAPTER 4. BIOLOGICAL SIGNALS 7

Table 9. Specificity vs sensitivity for donor splice signal models

Sensitivity level

Model 20% 50% 90% 95%

FP Sp | FP Sp| FP Sp| FP Sp
WMM | 68 50.0% | 368 32.0% | 2954  9.4% | 4185 T7.1%
WAM | 79 49.6% | 350 33.0% | 2160 12.4% | 4153 7.2%
MDD | 59 54.3% | 307 36.0% | 1985 13.4% | 3382 8.7%

Legend. Data for genes of the GENSCAN test set (Appendix B).

2a) If X5 # @, then the (conditional) WMM model for subset Hs is used to

generate the nucleotides at the remaining positions in the donor site;

2b) If X5 = G, then X_4 is generated from the (conditional) WMM model for
the subset G5.

3a) If (X5 = G and) X_; # G, then the WMM model for subset G5 H_ is used,;
3b) If (X5 =G and) X1 = G, X_; is generated from the model for G5G_;.
4) ...and so on, until the entire 9 bp sequence has been generated.

The discriminative power of the MDD model is compared to that of the previously
used WMM and WAM models in Fig. 10, as tested on the GENSCAN test set 7
containing 338 donor splice sites. As for the acceptor site models, the number of
false positives (FP) was determined at various levels of sensitivity; these data are
given in Table 9. Fig. 10 and Table 9 demonstrate quite significant improvements
in discriminative power for the MDD model vs the other two types of models. Most
notably, the MDD model appears much better able to distinguish (and give very
low scores to) sites with poor potential as donor signals from the remainder of sites
(Fig. 10c).

Aside from the improvement in predictive ability demonstrated above, the MDD
procedure may also lend insight into the mechanism of donor splice signal recognition.
Specifically, the data of Fig. 9 suggest some fairly subtle properties of the Ul:donor

signal interaction, namely:
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(i) A 5'/3" compensation effect, in which matches to consensus nucleotides at
nearby positions on the same side of the intron/exon junction are positively
associated, while poor matching on one side of the junction is almost always

compensated by stronger matching on the other side;

(ii) An adjacent base-pair effect, in which base pairs at the edge of the donor

splice site appear to form only in the presence of adjacent base pairs; and

(iii) A G5 preference effect, in which G is preferred at position +3 only for a
subclass of strongly Ul-binding donor sites.

The evidence for each of these effects is summarized below.

5 /3" compensation effect. First, G_; is almost completely conserved (97%) in
H; donor sites (those with a non-G nucleotide at position +5) vs 78% in G sites,
suggesting that absence of the G:C base pair with Ul snRNA at position +5 can
be compensated for by a G:C base pair at position —1, with a virtually absolute
requirement for one of these two G:C base pairs (only 5 of 1,254 donor sites lacked
both G5 and G_;). Second, the Hjs subset exhibits substantially higher consensus
matching at position —2 (A_y = 85% in H; vs 56% in (5 ), while the (G5 subset exhibits
stronger matching at positions +4 and +6. Similar compensation is also observed in
the G5G_1 vs GsH_; comparison: the G5H_; subset exhibits substantially higher
consensus matching at positions +6 (76% vs 42%), +4 (93% vs 70%) and +3 (100%
Rs vs 93%). Yet another example of compensation is observed in the G5G_1A_;
vs G5(G_1 B_5 comparison, with the G5(G_; B_, subset exhibiting increased consensus
matching at positions +4 and +6, but somewhat lower matching at position —3. This
effect might simply be a consequence of the energetics of RNA helix formation, in
which adjacent base pairs contribute greater stability due to favorable base stacking
interactions. Another possible interpretation is that this compensation effect results
from constraints acting at steps subsequent to the Ul:donor interaction. In particular,
the two sides (exon and intron) of the donor signal may be recognized separately by
U5 and U6 snRNAs, respectively (e.g., Moore et al., 1993), and it could be that at
least one of these interactions must be fairly strong for splicing to take place (P. A.

Sharp, personal communication).
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Adjacent base-pair effect. Hs splice sites have nearly random (equal) usage of the
four nucleotides at position +6, implying that base pairing with Ul at position +6
does not occur (or does not aid in donor recognition) in the absence of a base pair
at position +5. The almost random distribution of nucleotides at position —3 of the
G5G_1 B_3 donor sites also suggests that base pairing with Ul snRNA at position —3
does not occur or is of little import in the absence of a base pair at position —2.

Gs preference effect. Comparison of the relative usage of A vs G at position
+3 in the various subsets reveals interesting features. Perhaps surprisingly, G is
almost as frequent as A at position +3 (45% vs 49%) in the entire set of donor sites,
despite the expected increased stability of an A:U vs G:U base pair at position +3.
Only in subset Hj is a dramatic preference for A over G at position +3 observed
(81% vs 15%), suggesting that only in the absence of the strong G:C base pair at
position 45 does the added binding energy of an A:U vs G:U base pair at position
+3 become critical to donor site recognition by Ul snRNA. On the other hand, in the
most strongly consensus-matching donor site subset, G5G_1 A_yUsg, there is actually
a strong prefence for G5 over Az (59% vs 27%)! Two possible explanations for this
observation seem reasonable: either (a) there is selection to actually weaken the
Ul:donor interaction in these strongly matching sites so that Ul snRNA can more
easily dissociate from the donor site to permit subsequent steps in splicing; or (b) G
is preferred over Az at some step in splicing subsequent to donor site selection (but
this effect is only apparent when the strong constraints of Ul binding are satisfied by
consensus matches at many other positions).

In summary, the MDD model not only provides improved discrimination between
true and false donor sites by accounting for potentially important non-adjacent as
well as adjacent interactions, but may also give some insight into how the donor
site is recognized. It may be of interest in the future to apply this method to other
biological signals, e.g., transcriptional or translational signals in DNA or even perhaps
protein motifs. In many cases, however, this approach will have to be postponed until
sufficiently large sets of sequences have accumulated so that complex dependencies

can be reliably measured.
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4.4 Transcriptional and translational signals

In contrast to the fairly complex models used for splice signals, relatively simple
models were used for transcriptional and translation signals. There are two primary
reasons for this apparent discrepancy. The first is that accurate detection of splice
signals is probably much more important for reliable exon prediction in higher eu-
karyotes which typically have many introns per gene, so greater effort was invested
in modeling these signals. The second reason is that there is much less data available
for translational and transcriptional signals than for splice signals, making it diffi-
cult or impossible to consider complex dependencies. For example, the learning set
L contains 1,254 introns, hence 1,254 donor and acceptor splice sites, but only 380
genes, hence 380 translation initiation and termination sites and even fewer promoters
and poly-adenylation signals since the boundaries of the GenBank sequence often fall
within 5" and/or 3’ untranslated regions (and even in cases where the transcription
unit is complete, promoter and poly-adenylation signals are not always annotated).

The specific models used are described below. A 6 bp WMM was used for
the poly-adenylation signal (consensus: AATAAA) using the GenBank annotated
“polyA signal” features from the sequences of £. A 12 bp WMM model, beginning
6 bp prior to the initiation codon, was used for the translation initiation (Kozak)
signal (consensus: gccAcCATGgcg). Few base preferences were detected in the vicin-
ity of the stop codon: for the translation termination signal, then, one of the three
stop codons is generated (according to its observed frequency in £) and the next 3
nucleotides are generated according to a WMM. The translation initiation and termi-
nation signal models were based on the GenBank “CDS” feature annotation. Similar
models of these signals have been used by others (e.g., Guigé et al., 1992, Snyder &
Stormo, 1995).

For promoters, a very simplified model was used for what is undoubtedly an
extremely complex signal. The primary goal was to construct a model flexible enough
so that potential genes would not be missed simply because they lacked a sequence
similar to some preconceived notion of what a promoter should look like. Since about

30% of eukaryotic promoters lack an apparent TATA signal, a split model was used in
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which a TATA-containing promoter is generated with probability 0.7 and a TATA-less
promoter with probability 0.3. The TATA-containing promoter is modeled using a
15 bp TATA-box WMM and an 8 bp cap site WMM, both borrowed from a previous
analysis of 502 unrelated eukaryotic promoters (Bucher, 1990). The length between
the WMMs is generated uniformly from the range of 14-20 nucleotides, corresponding
to a TATA — cap site distance of 30-36 bp, from the first T of the TATA-box matrix to
the cap site (start of transcription). Intervening bases are generated according to an
intergenic-null model, i.e. independently generated from intergenic base frequencies.
At present, TATA-less promoters are modeled simply as intergenic-null regions of 40
bp in length. In the future, incorporation of improved promoter models, e.g., perhaps
using multiple types of known transcription factor binding sites along the lines of
Prestridge’s (1995) work, may lead to more accurate promoter recognition.

One other type of signal which was incorporated into the GENSCAN model is
the leader or signal peptide (e.g., Randall & Hardy, 1989) which occurs at the N-
terminus of secreted, lysosomal and membrane proteins. This signal was modeled
using a bipartite “codon-level WMM” (i.e. a WMM which generates a nucleotide
triplet at each position rather than a single nucleotide) of nineteen codons in length.
The annotated signal peptides (GenBank “sig_peptide” feature) from the genes of
the learning set were extracted (78 of 380 ~ 20% of genes had an annotated signal
peptide) and used as follows. Codon frequencies for the first four codon positions
after the initiation signal were averaged to give the first four columns of the WMM
(the basic portion of the signal peptide); and codon frequencies for codon positions 6
through 20 were averaged to give the next 15 columns of the WMM (the hydrophobic
portion of the signal peptide).* For initial exons and single-exon genes, then, a split
model is used to generate the first nineteen codons after the initiation signal: with
probability 0.8, these codons are generated using the default 3-periodic fifth-order
Markov model; and with probability 0.2, they codons are generated by the composite
signal peptide model.?

4The short stretch hydrophilic stretch which typically follows the long hydrophobic stretch was
determined to be too weak and too variable in terms of position to be useful for prediction.

5For exons of length A < 63 bp, of course, only codons three through A/3 — 1 are generated in
this fashion.



Chapter 5

IMPLEMENTATION AND
TESTING OF GENSCAN

This chapter covers the implementation and testing of the GENSCAN program, ad-
dresses some of its strengths and weaknesses, and gives some examples of its ap-
plication. The first section describes the command-line, email, and web versions of
the program and gives examples of the text and graphical output. The next section
reviews several measures of the predictive accuracy of gene prediction programs at
the nucleotide, exon, and gene levels. Section 5.3 compares the performance of GEN-
SCAN to that of other programs as tested on a large collection of vertebrate sequences
and on two smaller sets of human genomic sequences. The following section takes a
closer look at the accuracy of the program, addressing the dependence on exon size,
gene complexity, exon type, and organism of origin, and discussing the usefulness
of the exon probability as a reliability indicator. Finally, the last section describes
two of the most interesting applications of the program, namely finding genes in long

genomic sequences and prediction of alternative splicing, giving examples of each.

5.1 Implementation of GENSCAN

The GENSCAN program was written in the C programming language (Kernighan &

Richie, 1988) in a Unix environment and runs on a Sun workstation under the SunOS

83
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4.x or Solaris operating systems. Since C is a highly portable language, it should
be fairly straightforward to adapt the program to run on a PC or Apple Macintosh
as well if the need arises. The basic (command-line) version of the program reads
two input files: a DNA sequence file in FastA format and a parameter file which
contains a complete description of the model including the state transition and initial

probabilities, length distributions, and sequence generating models.

5.1.1 Approximations made

In the development of the program, several approximations were made which lead to
faster run time, reduced memory usage or other desireable features with little or no
effect on the accuracy of the calculations. The most significant of these approxima-
tions was to work primarily with “scores”, i.e. logarithms of ratios of probabilities, for
splice signals, coding/non-coding models, etc. rather than with the raw probabilities.
The primary advantage of taking logarithms is that large products of probabilities
are converted to (large) sums of log-probabilities, which can lead to substantial com-
putational savings.! Specifically, the logarithms (base 2) of appropriate probability
ratios were taken and these values multiplied by ten and rounded to the nearest inte-
ger: all of the algorithms (Viterbi, forward, backward) were implemented using these
scores whenever possible, converting back to probabilities only when necessary. For
the poly-adenylation signal, for instance, a matrix of the logarithms (base 2, times 10,
rounded) of the probabilities of generating each nucleotide at each position under the
positive (signal) model over the negative (non-coding, non-signal) models were used,
rather than separate (floating point) weight matrix probabilities for the positive and
negative models. In addition to reducing the size of the parameter file by approxi-
mately 50%, the main advantage of this approach is that the many large products of
(floating point) probabilities which must be calculated become sums of integer-valued

scores. Several other approximations were made along similar lines (not described).

IThe exact amount of time saved depends on the architecture of the computer.



CHAPTER 5. IMPLEMENTATION AND TESTING OF GENSCAN 85

5.1.2 What GENSCAN does

For a given input sequence and parameter matrix, the following sequence of operations

is carried out:

1)

2)

5)

The input sequence is read, stored in memory, and its C+G% content calculated.

The parameter file is read and the set of parameters appropriate to the C+G%

content group of the sequence (see Chapter 3) is chosen.

Both strands of the sequence are scored using the matrices for coding regions,

splice signals, etc. and these values are stored for later use.

The Viterbi, forward and backward algorithms are performed (using the pre-
calculated scores) and intermediate values of the «, 3 and 7 arrays (Chapter 2)

are stored in memory.

For each potential exon, the conditional probability, P{¢|S}, is calculated using
the forward/backward formula (Section 2.8).

Two types of output files are created:

Text output. The locations of the exons in the optimal parse of the sequence to-
gether with the corresponding (conceptually translated) peptide sequences are
recorded as well as (optionally) all suboptimal exons with conditional probabil-

ity above a chosen threshold level.

Graphical output. A diagram of the locations of all predicted exons in the

sequence is created in PostScript or gif format.

The text and graphical displays of the optimal parse for sequence HSNCAMX1 (Gen-

Bank accession # 729373), the human gene for neural cell adhesion molecule L1, are

shown in Figs. 11 and 12, respectively.

The text output is described in detail below (a somewhat briefer explanation

accompanies the standard text output of the program).
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Fig. 11. GENSCAN text output for GenBank sequence HSNCAMX1

Sequence HSNCAMX1 : 16288 bp : 59.53} C+G
Parameter matrix : HumanIso.smat : Isochore 4 (57 - 100% C+G)

PREDICTED OPTIMAL PARSE:

G.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr.. Acc.
1.01 Init + 1533 1608 76 2 1 86 82 161 0.976 14.70 EXAC
1.02 Intr + 4672 4777 106 2 1 101 73 137 0.998 13.94 EXAC
1.03 Intr + 5015 5217 203 2 2 132 49 356 0.985 36.24 EXAC
1.04 Intr + 6192 6681 390 1 O 85 81 419 0.562 36.91 PART
1.05 Intr + 6871 6982 112 2 1 71 70 136 0.999 10.71 EXAC
1.06 Intr + 7131 7315 185 0 2 89 51 398 0.996 36.84 EXAC
1.07 Intr + 7437 7568 132 1 0 100 84 112 0.999 13.80 EXAC
1.08 Intr + 7708 7851 144 2 O 46 75 319 0.999 27.84 EXAC
1.09 Intr + 8417 8528 112 0 1 93 89 130 0.999 14.21 EXAC
1.10 Intr + 8642 8808 167 2 2 73 77 297 0.946 27.90 EXAC
1.11 Intr + 8911 9067 157 2 1 60 61 101 0.939 4.86 EXAC
1.12 Intr + 9248 9372 125 2 2 53 106 190 0.997 18.70 EXAC
1.13 Intr + 9460 9570 111 2 0 102 52 157 0.619 15.02 EXAC
1.14 Intr + 9817 10014 198 2 O 81 109 246 0.784 26.54 EXAC
1.15 Imtr + 10246 10316 71 2 2 78 100 104 0.964 10.65 EXAC
1.16 Intr + 10499 10721 223 1 1 83 74 333 0.960 30.33 EXAC
1.17 Intr + 10798 10961 164 2 2 39 48 104 0.489 2.39 WRNG
1.18 Imtr + 11502 11666 165 2 O 21 73 190 0.459 12.15 PART
1.19 Intr + 11870 12071 202 1 1 100 105 288 0.999 31.77 EXAC
1.20 Imtr + 12160 12282 123 2 0 108 48 230 0.978 22.73 EXAC
1.21 Intr + 12376 12549 174 2 0 102 107 247 0.998 29.11 EXAC
1.22 Intr + 12666 12785 120 1 0 114 99 86 0.999 13.94 EXAC
1.23 Imtr + 12893 13048 166 0 O 120 94 202 0.999 25.17 EXAC
1.24 Imtr + 13352 13486 135 0 O 62 68 226 0.974 19.72 EXAC
1.25 Imtr + 13820 13892 73 0 1 63 99 112 0.999 9.41 EXAC
1.26 Term + 14475 14706 232 0 1 110 40 484 0.997 42.74 EXAC
1.-- PlyA + 15677 15682 6 1.06 7777
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Col. 1. The gene and exon number of each predicted exon, for reference.?

Col. 2. The type of exon or signal: initial exon (“Init”), internal exon (“Intr”), ter-
minal exon (“Term”), single-exon gene (“Sngl”), promoter (“Prom”) or poly-

adenylation signal (“PlyA”).?

Col. 3. The DNA strand of the predicted feature: “+” for the input strand, “-” for

the complementary strand.

Col. 4. The beginning position of the predicted feature (numbered on the input
strand).

Col. 5. The ending position of the predicted feature (numbered on the input strand).
Col. 6. The length of the predicted feature (in base pairs).

Col. 7. The “absolute reading frame” of the predicted exon: a codon ending at posi-

tion x in the sequence has reading frame x mod 3.
Col. 8. The “net phase” of the predicted exon (exon length modulo three).*

Col. 9. The score (x10) of the translation initiation or acceptor signal at the 5 end

of the predicted exon (Section 4.2).

Col. 10. The score (x10) of the donor or termination signal at the 3’ end of the exon
(Section 4.3).

Col. 11. The coding score (x10) of the coding portion of the exon (Section 3.6).
Col. 12. The exon probability, P{e|S} (Section 2.8).

Col. 13. The “exon score” (Section 2.10).

?In the example, a single complete gene comprising 26 coding exons is predicted.

3Type-D states (intron, intergenic, etc.) are not indicated, since their locations are always implied
by the exon/signal locations.

*This number may be useful in evaluating potential alternative splices derived by omission of
individual exons since any exon of net phase zero can be omitted from a parse without disrupting
the reading frames of flanking exons.
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Finally, the last column summarizes the accuracy of the predicted exon (see Section
5.2.2 for precise definitions of these terms): exactly correct (“EXAC”); partially cor-
rect (“PART”); or wrong (“WRNG”). (Of course, this last column is not normally
present in the program output — it is provided here simply for illustrative purposes.)
Note that, since the first predicted feature is an inital exon (and there is no prior
predicted promoter), the initial state of the parse is 5" UTR; since the last predicted
feature is a poly-adenylation signal, the terminal state of the parse is intergenic. In
this example, the annotated NCAM gene contains 28 coding exons, of which 23 were
predicted exactly (see Fig. 11), three were predicted partially (annotated exons at
[6,192:6,314], [6,411:6,581] and [11,551:11,666]) and two were missed completely (an-
notated exons at [4,127:4,141] and [13,990:14001]). No promoter or poly-adenylation
signals are listed in the GenBank annotation. The predicted poly-adenylation signal
at [15,677:15,682] (approximately one kb 3’ of the stop codon) matches the consensus
AATAAA and might well be correct.

Though the overall level of accuracy in this example is somewhat higher than
average for GENSCAN (see Section 5.3), it is by no means atypical. This example
also serves to illustrate some of the strengths and weaknesses of the program. First, it
is notable that the probabilities of many of the exons are very high. In particular, 21
of 26 predicted exons have probability > 0.90: of these, all are exactly correct. Of the
exons with probability less than 0.90, two are exactly correct, two are partially correct
(predicted exons 4 and 18), and one is wrong (predicted exon 17). Taken together,
these results suggest that the exon probability may be a useful guide to the reliability
of the prediction: this issue is addressed systematically in Section 5.4.5. The types of
mistakes made by the program are also of interest. Of the partially correct exons, the
donor site of predicted exon 18 is correct, but its acceptor site is 49 bp 5" of the actual
site; both splice sites of predicted exon four are correct but they belong to different
annotated exons (see Fig. 12), i.e. the predicted exon erroneously includes a small
intron. The predicted exon which is wrong (i.e. not overlapped by any annotated
exon) is unusual in several respects: it not only has the lowest probability and exon
score of any predicted exon, but it also has unusually weak donor and acceptor splice

signal scores (both weaker than any score for a true splice site in this gene). Thus, the
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splice signal and exon scores may also provide useful information about the reliability
of the prediction. Finally, the most distinctive property of the two annotated exons
which were missed is their extremely small size (15 and 12 bp, respectively), raising

the issue of the accuracy of prediction as a function of exon length (Section 5.4.1).

5.1.3 Email and web servers

The GENSCAN program has been made available to the scientific community in two
forms. First, an electronic mail server was set up which may be accessed by sending a
DNA sequence in FastA format to genscan@gnomic.stanford.edu. The standard
command line version of the program is then run locally and the results (text output)
are emailed back to the sender, usually in a few minutes or less. Inclusion of the word
“POSTSCRIPT” at the beginning of the mail message causes the program to return
the graphical (PostScript) output as well. Second, a web interface for the program
was developed [http://gnomic.stanford.edu/GENSCANW.html]. This form
of the program may be accessed using a web browser such as Netscape Navigator:
the genomic sequence to be analyzed is simply “pasted” into the appropriate box on
the web page. The sequence is then processed locally by the standard command-line
version of GENSCAN and a web page is created which displays the text output and
provides links to PostScript and gif images of the predicted exon locations in the
sequence. (The gif image may be viewed directly through most web browsers; the
PostScript file can downloaded for viewing or printing on the user’s computer.) The
web server was designed primarily for users who have only one or a few sequences
to process or who just want to try out the program. The email server is more ap-
propriate for users who have a large number of sequences to process or who wish to
systematically check the accuracy of the program on a large test set. Both versions
accept sequences up to 200 kb in length. Computer memory is the only factor which
limits the length of sequence which can be processed. If necessary, a program version
could be written which can process arbitrarily long sequences by writing intermedi-
ate values of the recursion variables and certain other quantities to a file instead of
storing them in computer memory. Such a program would, of course, run much more

slowly (probably by a factor of ten or more).
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5.2 Measuring predictive accuracy

A variety of quantitative measures have been proposed to characterize the accuracy
of gene prediction methods (reviewed in Burset & Guigd, 1996). Fundamentally,
accuracy is related to the degree of concordance between the predicted and actual
(annotated) exon locations. At the nucleotide level, a prediction for a sequence of
length L. may be represented by the L-vector p with p; = 1 if position ¢ is in a
predicted coding region, 0 otherwise, for 1 < ¢ < L. The actual set of coding
exons in the sequence is represented by an analogous L-vector @ obtained from the
sequence annotation (GenBank “CDS” feature). The following quantities may then

be calculated from these vectors:
Predicted positives (predicted coding bp): PP = Y p;
Predicted negatives (predicted non-coding bp): PN = L — PP
Actual positives (annotated coding bp): AP = Y%  a;
Actual negatives (annotated non-coding bp): AN = L — AP
True positives®: TP =5-d = Y pia;

True negatives®: TN = (f— DE (f —ad) =Yk (1 —p)(1 —a;)

5.2.1 Nucleotide-level accuracy

Two commonly used measures of accuracy at the nucleotide level are sensitivity,
Sn = %, the proportion of actual coding nucleotides which were predicted to be
coding (undefined if AP = 0); and specificity, Sp = %, the proportion of predicted
coding nucleotides which were correct (undefined if PP = 0). Both sensitivity and
specificity range from 0 to 1, with perfect prediction occurring if and only if both

Sn and Sp are unity. However, neither measure by itself is a sufficient description of

5Here, & - ¢ is the standard dot product between two vectors.
61 represents the L-vector all of whose components are unity.



CHAPTER 5. IMPLEMENTATION AND TESTING OF GENSCAN 92

accuracy. For example, Sn =1 (is identically equal to unity) for the trivial program
which predicts all nucleotides of any input sequence to be coding (but Sp = 0 in this
case), and Sp = 1 (but Sn = 0) for a program which always predicts all nucleotides
as non-coding.

A single measure which captures aspects of both sensitivity and specificity is

the correlation coefficient, C'C', defined as the Pearson (product-moment) correlation
(TP)(TN)—(FP)(FN)

\/(PP)(PN)(AP)(AN)’
When defined, C'C' may be the best single measure of accuracy at the nucleotide level.

However, C'C' is not defined when any of the quantities PP, PN, AP, AN are zero,

between the vectors p’and @, which may be calculated as: CC =

e.g., if there is either no actual gene or no predicted gene in a sequence, making it
unsuitable for use in all cases. For this reason, Burset & Guigé (1996) introduced the
“average conditional probability” (ACP) measure, defined as the average of Sn, Sp,
and the quantities Sn’ = %, Sp' = % corresponding to the sensitivity and specifity
for non-coding positions. The average is taken over all conditional probabilities which
are defined (always at least one). For example, if all such terms are defined, ACP =
i[% + % + % + %] Since AC'P is an average of (conditional) probabilities, it
ranges between 0 and 1. The quantity AC = 2 x ACP — 1, termed “approximate
correlation”, ranges from -1 to 1 and can be compared to the correlation coefficient,
CC. In practice, AC is usually close to CC whenever C'C is defined (data not shown).
Further discussion of the advantages and disadvantages of each of these measures may

be found in Burset & Guigé (1996).

5.2.2 Exon-level accuracy

The nucleotide level accuracy measures Sn, Sp, C'C and AC give an overall sense
of how closely the predicted and actual coding regions in a sequence align, but do
not accurately reflect the identification of precise exon boundaries (splice sites). For
this purpose, a related set of exon-level accuracy measures are defined. Predicted
exons can be divided into four categories: ezact (identical to an annotated exon);
partial (one or both endpoints correct, but not identical to an actual exon, e.g., exons

4 and 18 in Fig. 11); overlapping (neither endpoint correct, but overlaps an actual
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exon); or wrong (not overlapped by any annotated exon). Similarly, annotated exons
can be divided into those which are exactly predicted, partially predicted, overlapped,
or missed (not overlapped by any predicted exon). For a test sequence, predicted
exons, PE, are compared to actual (annotated) exons, AE: true exons, T'E, is the
number of predicted exons which ezactly match an actual exon. Accuracy is then

measured by exon-level sensitivity, £Sn = % and exon-level specificity, £Sp = LE,

PE
ESn+ESp 7« ”
===k (“average exon-level accuracy”),

The average of these two quantities, KA =
is typically used as an overall measure of accuracy at the exon level in lieu of a
correlation measure. Other useful measures (Burset & Guigd, 1996) include: ME,
the proportion of annotated exons in a sequence which were missed; and W E, the
proportion of predicted exons which are wrong. For these last two measures, of course,

lower values indicate improved prediction.

5.2.3 Accuracy for a set of sequences

The above measures can be applied to any sequence containing a single gene (or
multiple genes on the same DNA strand). To summarize nucleotide level accuracy
for a set of sequences, there are two conventions: either (i) calculate each measure
separately for each sequence and average over all sequences for which the measure
is defined; or (ii) sum the basic quantities PP, TP, PE, etc. as if all the sequences
were concatenated, and calculate accuracy measures from these overall numbers. In
the examples below, accuracy is calculated by the first convention unless otherwise
indicated.” At the exon level, the convention of Burset & Guigé (1996) is to calculate
the quantities £Sn, ESp, MFE, etc. for each sequence and average these measures
over all sequences for which they are defined. Snyder & Stormo (1995) use somewhat
different measures, namely: EC', the proportion of actual exons in the set of sequences
which were predicted exactly; and EQO, the proportion of actual exons in the set
which were at least overlapped by a predicted exon. Finally, given a set of sequences
each of which contains a single complete gene, one may define “gene level accuracy”,

G A, as the proportion of actual genes which were predicted exactly, i.e. all exons

“In practice, both averaging conventions tend to give very similar results — see next section.
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exactly correct and no false exons predicted in the transcription unit (in practice, the
GenBank file). This measure, the most stringent of any proposed to date, reflects a
combination of both sensitivity and specificity since it penalizes for both missed and

wrong (or partially correct) exons.

5.3 Accuracy of GENSCAN vs other programs

The performance of GENSCAN has been measured on several different sets of human
and vertebrate genomic sequences. First, it was tested on the set of 570 vertebrate
genes constructed by Burset & Guigd (1996) as a standard for comparison of gene
prediction methods. This set, available by anonymous ftp®, is by far the largest set
of genes ever constructed for this purpose and has been carefully screened to remove
pseudo-genes, alternatively spliced genes and sequences with ambiguous, partial or
inconsistent annotation. Another advantage of this set is that results have been com-
piled for virtually all available gene finding programs (a highly complex undertaking,
given the varied system requirements and output formats of these programs). A dis-
advantage is that the set includes only multi-exon (intron-containing) genes and no
single-exon genes. In addition, since this set contains the vast majority of available
vertebrate genomic sequences with reliable annotation, it was not possible to con-
struct a truly independent training set of sufficient size to give reliable parameter
values. For this reason, the smaller GeneParser test sets of 28 and 34 human genes
(Snyder & Stormo, 1995) were set aside for testing at the beginning and all sequences
> 25% identical to any of these genes were removed from the GENSCAN learning set,
as described in Section 3.1. Performance of the program turned out to be quite robust
with respect to different sequence sets, giving similar results for the Burset/Guigé and

both GeneParser test sets (see below).

8See [http://www.imim.es/Geneldentification/Evaluation/Index.html].
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5.3.1 Burset/Guigé test set

Table 10 displays the standard measures of predictive accuracy at the nucleotide and
exon levels for GENSCAN and other programs as tested on the Burset/Guigo se-
quence set. Comparison of the accuracy data in this table shows that GENSCAN is
significantly more accurate at both the nucleotide and the exon level by all measures
of accuracy than all existing programs which do not use protein sequence homology
information (those in the upper portion of Table 10). This is probably the most impor-
tant result obtained in this thesis. At the nucleotide level, substantial improvements
are seen in terms of Sensitivity (Sn = 0.93 versus 0.77 for the next best program,
FGENEH), Approximate Correlation (AC = 0.91 versus 0.78 for FGENEH), and
Correlation Coefficient (C'C = 0.92 versus 0.80 for FGENEH). At the exon level,
dramatic improvements are seen across the board, both in terms of Sensitivity (Sn =
0.78 versus 0.61 for FGENEH) and Specificity (Sp = 0.81 versus 0.64 for FGENEH),
as well as Missed Exons (0.09 versus 0.15 for FGENEH) and Wrong Exons (0.05 ver-
sus 0.11 for GRAIL). At the gene level, 243 out of 570 genes were predicted exactly
by GENSCAN (so that GA = 22 = 0.43), demonstrating that the program is indeed
capable of predicting complete multi-exon gene structures with a reasonable degree of
success. The most complex multi-exon gene predicted exactly by GENSCAN was the
human gastric (H4, K+)-ATPase gene (GenBank accession # J05451), containing
22 coding exons.

GENSCAN was also found to be more accurate by almost all measures than the
two programs, GenelD+ (Guigd & Knudsen, unpublished) and GeneParser3 (Snyder
& Stormo, 1995), which make use of protein sequence homology information (Ta-
ble 10). In particular, all nucleotide-level measures were higher for GENSCAN. At
the exon level, £Sn and ESp values were substantially higher for GENSCAN and
wrong exons (W E) substantially lower; only in the category of missed exons (M FE) did
GenelD+ do better (0.07 versus 0.09 for GENSCAN). Since GENSCAN is intended
for use as a first-pass screening technique for newly sequenced genomic regions, pep-
tide sequences predicted by the program can then be searched against the protein
sequence databases using a program such as BLASTP (Altschul et al., 1990) and

these results can provide independent confirmation or refinement of the prediction.
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Table 10. Comparison of gene prediction programs: Burset/Guigé test set

Accuracy per bp Accuracy per exon
Program No.seq. | Sm Sp AC CC | ESn ESp EA ME WE
GENSCAN 570 (8) |0.93 093 091 092 0.78 0.81 0.80 0.09 0.05
FGENEH 569 (22) | 0.77 0.88 0.78 0.80 | 0.61 0.64 0.64 0.15 0.12
GenelD 570 (2) | 0.63 0.81 0.67 0.65| 044 0.46 0.45 028 0.24
Genie 570 0.76 0.77 0.72 n/a | 0.55 048 0.51 0.17 0.33
GenLang 570 (30) | 0.72 0.79 0.69 0.71 | 0.51 0.52 0.52 0.21 0.22
GeneParser2 562 0.66 0.79 0.67 0.65| 035 040 0.37 034 0.17
GRAIL2 570 (23) | 0.72 0.87 0.75 0.76 | 0.36 0.43 0.40 0.25 0.11
SORFIND 561 0.71 0.85 0.73 0.72| 042 047 045 024 0.14
Xpound 570 (28) | 0.61 0.87 0.68 0.69 | 0.15 0.18 0.17 0.33 0.13
GenelD+ 478 (1) 1091 091 088 0.88| 0.73 0.70 0.71 0.07 0.13
GeneParserd 478 (1) | 0.86 0.91 0.86 0.85| 0.56 0.58 0.57 0.14 0.09

Legend. For each sequence in the Burset/Guigd test set, the forward-strand exons in
the default GENSCAN output (the optimal parse) were compared to the annotated ex-
ons (GenBank “CDS” key). The standard measures of predictive accuracy per nucleotide
(bp) and per exon (see text) were calculated for each sequence and averaged over all se-
quences for which they were defined. Results for the other programs are from Table 1 of
Burset & Guigd (1996), except Genie, for which results are from Kulp et al. (1996) —
C'C was not calculated for this program. Under the heading “No. seq.”, the number of
sequences (out of 570) effectively analyzed by each program is given (some programs failed
to run on certain sequences), followed by the number of sequences for which no gene was
predicted, in parentheses. (Some programs, e.g., Genie, always predict a gene in any in-
put sequence.) Performance of the two programs which make use of amino acid similarity
searches, GenelD+ and GeneParser3, are shown separately at the bottom of the table; these
programs were tested only on sequences less than 8 kb in length.
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Table 11. GENSCAN accuracy versus C+G content: Burset/Guigé test set

C+G% Accuracy per bp Accuracy per exon
range No. seq. Sn Sp AC CC ESn ESp FEFA ME WE

> 57 104 (1) | 0.95 0.90 0.89 0.90 0.76 0.77 0.77 0.08 0.07
51 — 57 139 (2 093 0.94 091 0.92 0.75 0.76 0.76 0.07 0.05
43 - 51 164 (1 0.94 091 091 0.91 0.80 0.82 0.81 0.07 0.05

(2)
(1)
<43 163 (4) | 0.92 094 091 0.93 0.79 086 0.84 0.12 0.05
< 43% 163 (6) | 0.87 0.96 0.88 0.92 0.75 083 0.84 0.17 0.03

Legend. The Burset/Guigd set was partitioned according to the C+G% content (first col-
umn) of the GenBank sequence. The first four rows show results of the default GENSCAN
program, which uses overall coding/non-coding hexamer matrices (see Chapter 3) for se-
quences in groups II, IIT and IV, but uses group I-specific matrices for sequences of < 43%
C+G. The last row, designated *, shows data for sequences of < 43% C+G scored with the
overall hexamer matrices. The number of sequences in each subgroup is given under the
heading “No. seq.”, followed by the number of sequences for which no gene was predicted,
in parentheses.

Thus, the overall accuracy of an integrated gene finding approach involving GEN-
SCAN might well be significantly higher than the values listed in Table 10 would
indicate. The genomic sequence may also be screened against the EST database (Bo-

guski, 1995) using BLASTN (Altschul et al., 1990) or TBLASTX (Gish & States,

1993): an example of the use of this information is given in Section 5.5.

5.3.2 Accuracy versus C+G% content

It was also of interest to determine whether or not the steps taken to account for
the structural properties of genes in different compositional regions (Chapter 3) were
indeed successful in achieving the stated goal (Section 1.1) of predictive performance
which is independent of sequence composition. Table 11 shows the accuracy of GEN-
SCAN for different C+G% compositional subsets of the Burset/Guigé test set. The
results show that overall performance, as measured by AC or C'C, is indeed almost
independent of composition, e.g., C'C values of 0.93, 0.91, 0.92 and 0.90 were obtained
for seqeunces of < 43, 43-51, 51-57, and > 57% C+G, respectively, and AC values

were even more homogeneous. Comparison of the last two rows of the table shows



CHAPTER 5. IMPLEMENTATION AND TESTING OF GENSCAN 98

Table 12. GENSCAN accuracy: GeneParser test sets

Test Accuracy per bp Accuracy per exon

set  No. seq. Sn Sp AC CC ESn ESp FEFA ME WE
| 28 (0) | 0.98 0.90 0.93 0.93 0.77 0.78 0.77 0.04 0.04
IT 34 (1) | 090 0.93 0.89 0.91 0.69 0.78 0.75 0.13 0.03

Legend. Data is shown for GeneParser test sets I (28 human genes) and II (34 human
genes), which are described in Snyder & Stormo (1995). Accuracy measures were calculated
as described in the legend to Table 11 (see also text), using the Burset/Guigé measures.

that the group I-specific scores (Section 3.6) do indeed provide better accuracy in
A+T rich sequences by almost all measures. However, there were some subtle dif-
ferences in the types of errors made by the program in A+T rich sequences versus
others. Specifically, the number of genes missed (4) was higher than for the other
groups as was the Missed Exons statistic (0.12 versus 0.08 or less for the other three
groups). However, this is compensated for by a fairly large increase in exon-level
specificity, resulting in overall exon accuracy levels which are actually highest in this
subset. Nevertheless, these differences are generally rather slight and are less sub-
stantial than the differences observed for most other programs for distinct C+G%
compositional subsets of this set (Burset & Guigd, 1996) or for the GeneParser test

sets (see below).

5.3.3 GeneParser test sets

It was of particular interest to determine whether or not the relatively high level
of accuracy observed for GENSCAN on the Burset/Guigé set would also hold for a
truly independent test set not overlapped by any genes of the learning set. GENSCAN
accuracy for the GeneParser test sets, as calculated using the conventions of Burset
& Guigd, is shown in Table 12. At the nucleotide level, correlation coefficient (C'C')
values of 0.93 and 0.91 for the GeneParser test sets are very close to the value of 0.92
observed in the Burset/Guigé set, and similarly for the approximate correlation, AC.
For GeneParser test set 11, exon-level sensitivity and specificity values were a bit lower

than for the Burset/Guigé set and M E was higher, but the proportion of wrong exons
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was lower (0.03 versus 0.05). This difference may be explained in part by the fact
that a higher proportion (1/34 ~ 3%) of the genes in this set was completely missed
by GENSCAN;, as compared to 8 out of 570 (1.4%) of genes in the Burset/Guigé set.
For GeneParser test set I, by contrast, no gene was missed by GENSCAN. In this
set, exon-level £Sn and FESp values are close to the Burset/Guigé values and both
ME and W E are lower, with a particularly low value observed for missed exons (0.04
versus 0.09). Thus, the overall level of accuracy for GENSCAN on the GeneParser
sets was quite comparable to that observed in the much larger Burset/Guigd set.

In their paper, Snyder & Stormo (1995) used somewhat different accuracy mea-
sures (see previous section) to compare the performance of their program, GeneParser,
with that of GenelD (Guigé et al., 1992) and “GRAIL3” (Xu et al., 1994b), i.e. the X-
windows version of GRAIL II with the “gene assembly” option. GENSCAN accuracy
for these sets, as measured using their conventions, is shown in Table 13 alongside
the corresponding values for the other programs. Several features of this data are
notable. First, both measurement conventions give nearly identical values for the
nucleotide-level accuracy measures Sn, Sp and CC (comparing Tables 12 and 13),
and the EC statistic is similar to the Burset/Guigé FESn statistic. Thus it proba-
bly does not make a great deal of difference which averaging convention is used to
summarize the accuracy of a gene prediction program for a set of sequences. Sec-
ondly, it is clear that the performance of GRAIL, and to a lesser extent GeneParser,
is sensitive to C+G% content, with lower levels of accuracy observed in A+T rich
sequences (e.g., comparing C'C or EC values), while GenelD appears less sensitive to
C+G content, but has overall accuracy which is significantly lower than for the other
programs. GENSCAN’s performance, as was observed for the Burset/Guigd set, is
quite stable with respect to C+G content and is consistently better than the other

programs, sometimes by a fairly wide margin.

5.4 Accuracy of GENSCAN: a closer look

In this section, the accuracy of GENSCAN is examined from various points of view in

order to gain a better understanding of the factors contributing to its performance and
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Table 13. Comparison of gene prediction programs: GeneParser test sets

Program
GenelD GRAIL3 GP2 GENSCAN
DATASET 1 II I 11 I II I II

All sequences
Sn (bp level) 0.69 0.50 | 0.83 0.68 | 0.87 0.82|0.98 0.95
Sp (bp level) 0.77 0.75 | 0.87 0.91 | 0.76 0.86 | 0.90 0.94
CC (bp level) 0.69 0.55|0.83 0.75|0.78 0.80 |0.93 0.93
EC (exons correct) 0.42 0.33 10.52 0.31]0.47 0.46 | 0.79 0.76
EO (exons overlapped) | 0.73 0.64 | 0.81 0.58 | 0.87 0.76 | 0.96  0.91
High C+G
Sn (bp level) 0.72 0.85|0.87 0.80|0.90 0.65|1.00 0.98
Sp (bp level) 0.73 0.73 1095 0.88|0.93 0.87 091 0.98
CC (bp level) 0.65 0.73 | 0.88 0.80 | 0.89 0.71 | 0.94 0.98
EC (exons correct) 0.38 043 |0.67 0.50 | 0.64 0.57 | 0.76 0.64
EO (exons overlapped) | 0.80 0.86 | 0.89 0.79 [ 0.96 0.79 | 1.00  0.93
Medium C+G
Sn (bp level) 0.65 0.47 | 0.86 0.68 | 0.86 0.84 | 0.97 0.95
Sp (bp level) 0.77 0.76 | 0.84 0.91 | 0.70 0.87 | 0.90 0.95
CC (bp level) 0.67 0.52 1 0.83 0.750.75 0.820.93 0.94
EC (exons correct) 0.37 0.29 | 0.51 0.32]0.41 0.46 | 0.79  0.79
EO (exons overlapped) | 0.67 0.62 | 0.83 0.38 | 0.84 0.79 | 0.96 0.93
Low C+G
Sn (bp level) 0.82 0.56 | 0.51 0.45|0.79 0.71 | 0.93 0.80
Sp (bp level) 0.85 0.71 | 0.87 0.89 | 0.75 0.67 | 0.94 0.84
CC (bp level) 0.8 0.62 |0.62 0.62]0.72 0.67|0.92 0.8l
EC (exons correct) 0.80 0.470.25 0.16 | 0.40 0.37 | 0.85 0.68
EO (exons overlapped) | 0.85 0.63 | 0.55 0.42 | 0.85 0.58 | 0.85 0.74

100

Legend. Performance data is shown for GenelD, GRAIL3 (GRAIL II + “assembly”),
GeneParser2 (GP2), and GENSCAN for GeneParser test sets I and II. Sequence sets and
performance data for programs other than GENSCAN are from Snyder & Stormo (1995).
Nucleotide- and exon-level accuracy statistics were calculated using the conventions of Sny-
der & Stormo (see text). Each test set was divided into three subsets according to the C+G
content of the GenBank sequence: low C+G (< 45%); medium C+G (45 - 60%); and high

C+G (> 60%).
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to assess its strengths and weaknesses. The approach taken is to examine the accuracy
as a function of several independent variables, including exon size, gene complexity,
exon type and organism of origin. Finally, the last subsection addresses predictive
accuracy as a function of the exon forward-backward probability (Section 2.8), in a
sense asking how “self-critical” the program is, i.e. how well it can distinguish which

parts of its predictions are reliable and which are not.

5.4.1 Accuracy as a function of exon length

The NCAM example (Figs. 11 and 12) raised the issue of whether or not GENSCAN is
capable of finding very small exons. To measure this effect systematically, annotated
and predicted exons were grouped into ten different length ranges, and accuracy
statistics were calculated separately for each group (Table 14). This data shows
that the proportion of exons missed is indeed much higher for very small exons,
but decreases steadily with increasing exon length reaching very low levels (one or
two percent) for exons of average size or above (say > 150 bp). The most obvious
explanation for this phenomenon is that the amount of information derived from the
coding/non-coding portion of the exon score increases (linearly) with exon length
(Section 3.6). Interestingly, there is a considerable amount of biochemical evidence
suggesting that such extremely small exons are inefficiently spliced and /or require the
presence of special splicing activating sequences in the flanking introns (e.g., Dominski
& Kole, 1991, Black, 1991). Building models of such signals into the overall gene
model architecture (after the nature and function of these signals is more clearly
worked out) might allow more accurate identification of short exons.

At the other extreme, although very large exons (say > 300 bp) are almost never
missed completely, they are somewhat less likely to be predicted exactly and more
likely to be predicted partially than medium-sized exons. The explanation for this
phenomenon is not clear, but might relate to the increased number of potential splice
sites in long exons or to other factors. Apropos, there is some biochemical evidence
that long exons (> 300 or 500 bp) are less efficiently recognized by the splicing

machinery and may be skipped in vitro (Robberson et al., 1990) and in vivo (Sterner
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Table 14. GENSCAN accuracy versus exon length: Burset/Guigé set

Length Annotated exons Predicted exons
range (bp) # | %Exac %Part  %Miss # | %WExac %Part %Wrng
<24 89 38 8 52 44 7 11 11
25 - 49 163 58 15 25| 124 76 6 18
50 — 74 248 70 12 16 | 204 85 9 6
75 - 99 382 85 8 6| 389 84 6 10
100 — 124 | 351 84 9 71 366 81 8 11
125 - 149 | 425 88 8 41 460 81 10 7
150 — 174 | 261 88 9 2| 283 81 11 7
175 -199 | 167 91 7 2| 188 81 12 7
200 - 299 | 353 90 8 1| 390 82 8 8
> 300 211 66 19 1] 204 69 20 10
Total 2650 81 10 8| 2678 81 10 9

Legend. For each range of lengths (column 1), the number of annotated and predicted
exons in the genes of the Burset/Guigd test set are given in columns 2 and 6, respectively.
Columns 3, 4 and 5 give the percentage of annotated exons predicted exactly, predicted
partially, or missed, respectively. Columns 7, 8 and 9 give the percentage of predicted
exons which were exactly correct, partially correct, or wrong, respectively. Overall totals
for the Burset/Guigd set are given in the bottom row. The percentage of exons overlapped
is not given because: 1) this number is negligible in most cases; and 2) in any case, it can
be easily calculated from the data in the other columns.



CHAPTER 5. IMPLEMENTATION AND TESTING OF GENSCAN 103

et al.,, 1996); the lengths of flanking introns may also be important (Sterner et al.,
1996). Finally, it is notable that predicted small exons (say < 50 bp) are almost as
likely as medium or large predicted exons to be exactly correct. Thus, although the
program does miss quite a few small exons, when it does predict a small exon it is

likely to be correct.

5.4.2 Accuracy as a function of gene complexity

One of the problems with the Burset/Guigé test set, as for the GENSCAN learn-
ing set (Section 3.1), is that it is biased toward relatively short sequences containing
genes of relatively low complexity.? Specifically, the average number of exons per gene
in the Burset/Guigd set is only 4.6, probably significantly less than the average for
human genes, and the GeneParser sets have a similar bias toward short genes with
relatively few exons. This raises the obvious issue of whether the results obtained
for GENSCAN and other programs on this set will carry over to more typical human
genomic contigs containing genes of greater average complexity. To address this issue,
the genes of the Burset /Guigé set were divided into four groups according to the num-
ber of coding exons and results tabulated separately for each such group (Table 15).
Contrary to what one might expect, the accuracy of GENSCAN was actually found
to tncrease with increasing gene complexity, reaching its highest levels by all measures
for genes with ten or more exons! This surprising result raises the possibility that
predictive accuracy might actually be higher for typical genomic sequences than for
the Burset/Guigd set. The most likely explanation for this phenomenon has to do

with the the differing accuracy for different exon types (see below).

5.4.3 Accuracy as a function of exon type

The accuracy of GENSCAN for different types of exon is summarized in Table 16. The

results show quite clearly that internal exons are the most accurately predicted, with

9Here, the term “gene complexity” refers simply to the number of exons/introns the gene contains.
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Table 15. GENSCAN accuracy versus gene complexity: Burset/Guigo set
# of Accuracy per bp Accuracy per exon
exons No. seq. Sn Sp AC CC ESn ESp FA ME WE
2-3 284 (7)| 0.92 0.93 0.89 0.92 0.73 077 0.76 0.10 0.05
4-5 147 (1) | 094 091 0.90 0.91 0.81 0.83 0.83 0.09 0.07
6-9 103(0)| 0.96 0.93 0.93 0.93 0.83 085 0.84 0.07 0.05
> 10 36 (0) | 096 0.93 0.94 0.93 0.87 087 0.87 0.05 0.05

Legend. The organization of the table is similar to that of Table 11, except that genes
of the Burset/Guigé set were divided according to the number of coding exons (column 1)
rather than C+G% content. Accuracy measures are as described in text. The number of

sequences in each subgroup is given under the heading “No. seq.”, followed by the number

of sequences for which no gene was predicted, in parentheses.

Table 16. GENSCAN accuracy versus exon type: Burset/Guigo set

Exon Annotated exons Predicted exons

type # | %Exac %Part %Miss # | %Exac %Part %Wrng

Initial 570 65 25 9 457 81 9 10
Internal | 1,510 90 5 411,707 80 11 8
Terminal 570 76 8 15 509 84 6 8

Total 2,650 81 10 812,678 81 10 9

Legend. The organization of the table is the same as for Table 14, except that annotated
and predicted exons were grouped by exon type rather than length. Again, the proportion
of overlapped exons is not given and totals are listed in the bottom row. A total of five
single-exon genes were predicted in the Burset/Guigé sequences (not shown as a separate
row, but included in the totals).
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an impressive 90% of all annotated internal exons identified exactly. This finding sug-
gests that the splice signal models contribute strongly to GENSCAN’s performance,
and offers an explanation for why the program performs better on more complex
genes. Obviously, the more coding exons a gene has, the higher the proportion of
internal exons relative to initial and terminal exons, e.g., a gene with three coding
exons has only 33% internal exons, while this proportion increases to 80% or more
for genes with ten or more coding exons.

Terminal exons were the most likely to be missed (15% versus 9% or less for
the other types), which may be explained by the much greater average information
content of the donor splice signal at the 3’ terminus of initial and internal exons versus
the stop signal at the 3’ end of terminal exons. Two other somewhat puzzling features
of this data turned out to be closely related. First, initial exons were the least likely
to be predicted exactly (65% versus more than 75% for the other two types), but
were less likely to be missed than terminal exons, with a much higher proportion of
partially predicted exons (25%) than for the other exon types. Second, GENSCAN
seems to have a tendency to overpredict internal exons (1,707 predicted versus 1,510
actual), but to underpredict initial exons (457 versus 570).

Further examination of the predictions for the Burset/Guigé set showed that one
of the most common mistakes made by GENSCAN was to predict initial exons as
longer internal exons ending at the correct donor site, but beginning at an acceptor
site 5’ to the translation initiation site, and that many of the partially predicted
initial exons are of this type. In some cases these internal exons were actually correct
spliceosomal exons, i.e. the predicted acceptor site was correct for an intron upstream
(5') of the translation start site. Such a prediction is incorrect in the sense that it will
lead to a predicted protein which has some extra amino acid residues at its amino
terminus, but might still be perfectly acceptable for certain purposes, e.g., design
of PCR primers to amplify a ¢cDNA from a ¢cDNA library. It was not possible to
quantify precisely how many such predicted internal exons were correct in this sense
because the GenBank annotation often does not indicate exons and introns outside
of the coding region (CDS). Finally, similar levels of accuracy were observed when

predicted exons were grouped by exon type (right half of Table 16), in contrast to the
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Table 17. GENSCAN accuracy for different organisms

Organism Accuracy per bp Accuracy per exon

or group No.seq. | Sn Sp AC CC| ESn ESp FEFA ME WE

Primates 237 (1) | 0.96 094 0.93 0.94 0.81 0.82 0.82 0.07 0.05
Rodents 191 (4) | 0.90 0.93 0.89 0.91 0.75 0.80 0.78 0.11 0.05
Non-mam. 72 (2) ] 0.93 0.93 0.90 0.93 0.81 085 0.84 0.11 0.06
Drosophila 202 (1) | 0.96 0.92 0.89 0.90 0.68 0.68 0.68 0.11 0.10
Maize 41 (0) | 0.94 0.93 0.90 0.90 0.67 0.71 0.69 0.09 0.08

Legend. The first three rows show results of GENSCAN for different subsets of the
Burset/Guig6 test set, divided by the organism of origin. Classification by organism was
based on the GenBank “ORGANISM” key: the primate set comprised mostly human se-
quences; the rodent set, mostly mouse and rat; and the non-mammalian set, a diverse group
of vertebrates comprising 22 fish, 17 amphibian, 5 reptilian and 28 avian sequences. The
last two rows show accuracy for sets of Drosophila melanogaster and Zea mays sequences,
respectively (see text). The number of sequences in each subgroup is given under the head-
ing “No. seq.”, followed by the number of sequences for which no gene was predicted, in
parentheses. Accuracy measures are as described in text.

case for annotated exons.

5.4.4 Accuracy for different organisms

An issue of obvious importance is the phylogenetic generality of the program. To ad-
dress this question, sequences from the Burset/Guigé set were divided into primates,
rodents, and non-mammalian vertebrates'® (Table 17). Overall, accuracy was fairly
similar for these groups, but subtle differences were apparent. In particular, the pro-
gram seems to perform slightly less well on rodent sequences than for primates, but
this difference cannot be explained simply on the basis of the greater phylogenetic dis-
tance of the rodent sequences to the human sequences from which GENSCAN param-
eters were derived, since accuracy was higher for the (more distant) non-mammalian
vertebrate sequences by all measures (Table 17). The explanation for this effect is

not clear, but might relate to biases in the set of available rodent sequences or other

10There were also some non-primate, non-rodent mammalian sequences, but not enough to make
any other coherent taxonomic groupings.
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non-biological effects. Other programs exhibited variable dependence on vertebrate
group (Burset & Guigé, 1996).

The program was also tested on two sets of non-vertebrate sequences: a set of
202 complete Drosophila genes, based on a set constructed by D. Kulp and M. G.
Reese (Appendix C), and a set of 41 nonredundant complete maize genes constructed
by V. Brendel (Appendix D). Surprisingly, nucleotide-level accuracy was found to be
almost as high for Drosophila and maize as for human, but exon-level accuracy was
somewhat lower. Even so, the fact that the accuracy was not dramatically different
for these two organisms than for vertebrates suggests that the overall model architec-
ture introduced here may be sufficiently general so as to be applicable to most or all
higher eukaryotes. These results can also be interpreted as evidence that the signals
recognized by the basic splicing machinery are fundamentally similar across verte-
brates, invertebrates and plants. However, the program is not completely general,
e.g., users have reported rather poor performance for C. elegans genomic sequences.
It is possible that trans-splicing or some other nematode-specific feature may con-
fuse the gene model in this case. A natural follow-up project would be to compare
gene structural and compositional properties among vertebrates, monocot and dicot
plants, nematodes, arthropods, etc. and perhaps to develop separate parameter files

or program versions appropriate to different classes or phyla.!!

5.4.5 Accuracy as a function of exon probabilities

Finally, it was of interest from at least two points of view to determine how closely
the exon (forward-backward) probabilities (Section 2.8) reflect the accuracy of pre-
dicted exons. First, as a practical matter, one would like to know how useful the
exon probability is as a guide to the reliability of the prediction. Secondly, it is of
interest to determine how “self-critical” the program is, i.e. the extent to which the
model structure can distinguish which parts of a sequence are well described and
which are uncertain. For this purpose, the predicted exons in the optimal parse

of each Burset/Guigd sequence were grouped by exon probability, P{¢|S} and then

UPpreliminary efforts in this direction have yielded promising results (data not shown).
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Table 18. Accuracy versus exon probability: Burset/Guigé test set

Probability | Predicted Accuracy class
range exons Exact Partial Overlap Wrong
< 0.50 248 29.8% 27.8% 4.0% 38.3%
0.50 — 0.75 362 54.1% 26.2% 2.2% 17.4%
0.75 —0.90 337 74.8% 16.0% 1.2% 8.0%
0.90 — 0.95 263 87.8% 6.1% 0.4% 5.7%
0.95 —0.99 551 92.4% 3.4% 0.2% 4.0%
> 0.99 917 97.7% 0.9% 0.0% 1.4%
Total 2,678 80.6% 9.7% 0.9% 8.8%

Legend. GENSCAN was run on the Burset/Guigé test set of 570 vertebrate genes and
predicted exons were grouped according to their probability, P{e|S} (first column). For
each such group, the proportion of exons which were exactly correct, partially correct,
overlapped a true exon, or were wrong, are given in columns 3 to 6, respectively. The total
number of predicted exons in each group is shown in column 2.

compared to the sequence annotation (Table 18). The results indicate quite clearly
that the exon probability is a very useful guide to the likelihood that a predicted
exon is correct, with the proportion of exact predictions increasing monotonically as
a function of exon probability. In particular, fully 97.7% of the highest probability
predicted exons (P{e[S} > 0.99) were exactly correct, and this set is by no means
negligible, comprising more than a third of all predicted exons. As a consequence,
any predicted gene with six or more exons is likely to contain at least two exons with
probability > 0.99 (both of which are almost certainly correct), from which PCR
primers could be designed to amplify the cDNA with an extremely high degree of
confidence. Furthermore, slightly more than half of predicted exons have probability
> 0.95, and of these more than 95% are exactly correct (weighted average of data in
rows five and six), so that any gene with at least four coding exons is likely to have
at least two exons with P{e|S} > 0.95. For this reason, GENSCAN high probability
exons in particular should prove very useful in combined computational/experimental
gene identification efforts applied to newly sequenced human genomic regions. At the
other extreme, approximately 9% of predicted exons have probability < 0.50: such
exons are highly unreliable and should be treated with due caution in analyzing a

genomic sequence. Thus, in a certain sense GENSCAN “knows” how much weight to
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give to each of its predictions or, less anthropomorphically, the probabilistic model of

gene structure employed bears a surprisingly close relationship to reality.

5.5 Applications of GENSCAN

This section addresses two of the most promising applications of GENSCAN, namely
finding genes in newly sequenced genomic regions (even those in the publicly available
databases), and the use of suboptimal exons to explore alternative gene structures in
a sequence, which may in some cases indicate alternative splicing patterns or exons

missed by the optimal parse.

5.5.1 Finding genes

A shortcoming of the Burset/Guigé and GeneParser test sets is that, by construction,
they include only sequences containing single complete genes, usually with little 5" or
3’ flanking sequence. Only one systematic test of a gene prediction program (GRAIL)
on long human contigs (some containing multiple genes) has so far been reported in the
literature (Lopez et al., 1994), and the authors encountered a number of difficulties
in carrying out this test. In particular, it was not always clear whether predicted
exons not matching the annotation were false positives or might indeed represent
real exons which had not been found by the original submitters of the sequence.
For this reason, it was desireable to find long sequences containing multiple genes
which had been well studied experimentally and were well annotated. The best such
example found was GenBank sequence HSU47924 (accession # U47924), a recently
sequenced contig 117 kb in length from human chromosome 12pl3, in which six
genes had been detected using a combination of computational and experimental
approaches (Ansari-Lari et al., 1996). Annotated genes, GENSCAN predicted genes,
and GRAIL II predicted exons are displayed for this sequence for this sequence in
Fig. 13. GENSCAN predicted genes are labeled GS1 through GS8; annotated genes
are labeled with the gene name; GRAIL II, of course, predicts only exons, not genes.

Forward strand exons are indicated above the sequence line, reverse-strand exons
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below.!?
GENSCAN predicted genes which are similar or identical to annotated (known)

genes are as follows:
GS1 corresponds closely to the CD4 gene.'®

(GS2 is identical to one of the alternatively spliced forms of Gene A (function

unknown).

(GS3 contains several exons from both Gene B (function unknown) and GNB3

(G-protein beta-3 subunit).

GS5 is identical to ISOT (isopeptidase T'), except for the addition of a predicted

exon at around 74 kb.

GS6 is identical to TPI (triosephosphate isomerase), except with a different

translation start site.

This leaves GS4, GS7 and GS8 as potential false positives, which do not correspond
to any annotated gene, of which GS7 and GS8 are overlapped by GRAIL predicted
exons.

A BLASTP (Altschul et al., 1990) search of the predicted peptides corresponding
to GS4, GST and GS8 against the nonredundant protein sequence databases revealed
that:

(GS8 is substantially identical (BLAST score 419, P = 2.6 E-57) to mouse 60S
ribosomal protein (SwissProt accession # P47963).

GST is highly similar (BLAST score 150, P = 2.8 E-32) to C. elegans predicted
protein C26E6.5 (GenBank accession # 532806).

GS4 is not similar to any known protein (no BLASTP hit with P < 0.01).

12This is the standard convention used for the graphical output of GENSCAN.
13The predicted exon at around 1.5 kb is actually a non-coding exon of CD4.
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Examination of the genomic sequence around GS8 suggests that this is probably a
60S ribosomal protein pseudogene. Predicted gene GST might be an expressed gene,
but no hits were detected in the database of expressed sequence tags (dbEST) to
confirm this, so it remains uncertain. However, several ESTs were found which were
substantially identical to the predicted 3’ UTR and exons of GS4 (GenBank acces-
sion #s AA070439, W92850, AA055898, R82668, AA070534, W93300 and others),
strongly implying that this is indeed an expressed human gene which was missed by
the submitters of this sequence (probably because GRAIL did not detect it). Since
all five predicted exons of GS4 had probabilities > 0.98, I considered it a virtual cer-
tainty that the predicted gene structure was substantially correct. This information
was communicated to Dr. Martin Dyer (Academic Dept. of Haematology, Institute
of Cancer Research, Surrey, U.K., visiting Stanford at the time), whose laboratory
has since sequenced the full-length cDNA of this gene in both human and mouse,
confirming the exact locations of all five predicted coding exons (Dyer & Burge, in
preparation).

Aside from the prediction of this novel gene (which was not found by GRAIL and
could not have been found by protein sequence homology search), this example also
illustrates the potential of GENSCAN to predict the number of genes in a sequence
fairly well. In particular, of the eight genes predicted, seven correspond closely to
known or putative genes and only one (GS3) corresponds to a fusion of exons from
two known genes. This example also illustrates some of the difficulties which arise in
testing gene finding programs on long genomic contigs, since even in this relatively
well characterized region, several errors (omissions) were found in the GenBank an-
notation. Proper tests of the ability of GENSCAN to predict the number of genes
in a sequence will have to await construction of reliably annotated datasets of long

genomic contigs.

5.5.2 Suboptimal exons and alternative splices

Two other issues of interest in the practical application of GENSCAN are the use-

fulness of suboptimal exons and the potential for prediction of alternative splicing
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patterns of genes. These issues are again illustrated by means of an example, in this
case GenBank sequence HUMPROK (accession # L00727), the genomic sequence of
the human myotonin kinase (Mt-PK) gene. This gene, mutations of which are associ-
ated with the adult form of myotonic dystrophy (Fu et al., 1993), was chosen because
of the large number of known alternatively spliced forms (at least eight) and the
high quality of the sequence annotation. Figure 14 displays the optimal GENSCAN
parse of this sequence (black) together with all (three) suboptimal exons of proba-
bility greater than 0.25 (dark gray), and all annotated alternatively spliced forms.!*
Annotated exons were colored to match the predicted exons when exactly predicted,
or shown in light gray otherwise. The exon probabilities are shown adjacent to each
predicted exon for reference.

Several features are notable. First, the optimal parse consists mostly of very high
probability exons (P{e|S} > 0.99), of which all are correct in some or all alterna-
tively spliced forms. Of the three lower probability exons: the first overlaps the most
commonly used initial exon; the second is an alternative internal exon; and the last
is (apparently) incorrect (located in the 3’ UTR for some isoforms and in an untran-
scribed region for others). Each of these lower probability exons has an associated
suboptimal exon with which it is mutually incompatible: the first suboptimal exon
overlaps the most commonly used initial exon; the second is an alternative internal
exon (differing by only 15 bp from the other alternative); and the third is in fact the
most commonly used terminal exon. Thus, suboptimal exons may be useful for at
least two purposes: identification of exons missed by the optimal parse and, in some

cases, indication of potential alternatively spliced regions of a gene.

HMOf the eight known alternative splices, three (numbers II, I1I and IV) are identical in the coding
region, only differing in the locations of introns in the 5 UTR.
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Chapter 6

CONCLUSIONS

Previous chapters have described the development of a probabilistic model of the
(gene) structural and sequence compositional properties of human genomic DNA and
the application of this model to the problem of gene identification in unannotated
genomic regions. The main accomplishment was the development of a new gene iden-
tification program, GENSCAN, which has several significant advantages over existing
gene finding algorithms. Most importantly, predictive accuracy has been shown to be
substantially higher for GENSCAN than than for any other available method when
tested on standardized sets of human and vertebrate genomic sequences. In par-
ticular, the program is able to identify 70 to 80% of exons in a genomic sequence
precisely, with even higher levels of accuracy observed for complex genes containing
ten or more exons. Furthermore, consistently high levels of accuracy have been at-
tained for sequences of differing C+G% content and the program performs almost
as well on rodent and non-mammalian vertebrate sequences as for human sequences.
The program version developed for human genomic sequences is even capable of iden-
tifying approximately two thirds of exons exactly in maize and Drosophila sequences,
implying that the model incorporates gene structural and sequence properties which
are of fundamental importance in most or all higher eukaryotes.

Other important novelties are the ability to treat partial as well as complete genes

and the ability to predict multiple genes, occurring on either or both DNA strands,
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in a single sequence. These properties should make the program particularly useful
for analysis of the long genomic contigs which are being generated at an increasing
rate by the Human Genome Project and related genome sequencing efforts. Another
noteworthy feature of the program is its ability to assign a meaningful reliability
measure, the exon probability (P{¢|S}), to each predicted exon, which gives the user
a highly informative guide as to the degree of confidence which should be ascribed
to each aspect of a prediction. In some cases at least, suboptimal exons can indicate
potential alternatively spliced regions of a predicted gene. Finally, the potential use
in gene finding was demonstrated by the detection of a novel gene not homologous
to any known protein in a published human genomic sequence. (Several other such
examples are currently being investigated.)

Of existing algorithms, GENSCAN is most similar in its overall architecture to
the recently developed Genie program (Kulp et al., 1996), which uses a “generalized
Hidden Markov Model” of gene structure which is fundamentally similar to the model
described here. Genie, developed at the same time as GENSCAN in a collaboration
between groups at U. C. Santa Cruz and Lawrence Berkeley National Laboratories,
is not as general as GENSCAN, however, in that it does not include: 1) promoter
or poly-adenylation signals or intergenic regions; 2) intronless genes; 3) partial genes;
4) multiple genes in the same sequence; 5) signal peptides; or 6) differences in gene
structure between different isochore compartments. There are other substantial dif-
ferences as well, e.g., Genie uses neural network models for coding regions and splice
signals rather than strictly probabilistic models. Finally, as discussed previously, the
accuracy of GENSCAN is much higher than that reported for Genie (Table 10), al-
though recent improvements in Genie have narrowed this gap (M. G. Reese, personal
communication).

Aside from the specific goal of gene prediction, other aspects of this work may be
of some independent interest. Specifically, the Maximal Dependence Decomposition
(MDD) method (Section 4.3), developed to capture dependencies between positions
in the donor splice site signal, may prove useful in modeling other biological signals in
nucleic acid or protein sequences. The MDD procedure has certain advantages over

alternative methods such as (artificial) neural networks (e.g., Brunak et al., 1991) in
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that the method clearly indicates which dependencies are of primary and secondary
importance and since all parameters are explicit and can be easily interpreted. In
the case of the donor splice signal, at least, these dependencies are quite interesting
in themselves and suggest subtle features of the mechanism of donor site selection,
some of which could be tested experimentally.

The technique devised for smoothing sparse empirical length distributions (Sec-
tion 3.4) may also be a useful statistical tool in a variety of contexts, e.g., in estimating
smooth underlying distributions of protein lengths or in studying the evolutionary
divergence of the lengths of other biological structures such as introns and repeti-
tive elements. The studies of the relationships between structural and compositional
properties of human genes (Chapter 3) may also be of interest with regard to certain
questions about the evolution of genome organization. In particular, the dramatic in-
crease in the sizes of introns and intergenic regions in A+T rich regions of the genome
suggests that special mutational, repair or selective forces may be at work to expand
such regions or, conversely, to reduce the lengths of intronic and intergenic regions in
C+G rich portions of the genome.

It is worthwhile at this point to consider this work from a somewhat broader point
of view, which leads naturally to some other potentially interesting applications of
the probabilistic framework to areas beyond gene finding. From this point of view,
Chapters 3 and 4 can be represented by the relation, {S,®} — M, in the sense
that a set of sequences, S, with known gene locations (®) were used to derive a
specific model description, M. In this framework, use of the model for gene prediction
(described in Chapter 2), is represented by the relation {M,S} — @, in the sense
that the optimization (Viterbi) algorithm determines a specific parse (¢,,:) for a
given sequence, S, under the model specification M. This raises the obvious question
of whether the third permutation, {M,®} — S, has any significance. Since, in
general, many sequences are consistent with a given parse and model specification,
the interpretation of this relation should be the generation of a (random) sequence
or sequences (using the probabilities specified by the model, M) corresponding to a

pre-specified parse.
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Of what use might this be? Consider the computational experiment of generat-
ing a large number of such random sequences corresponding to a set of actual gene
specifications: compositional differences between such randomly generated sequences
and actual sequences could then provide information about signals or other biological
properties not adequately represented by the model, M. Such randomly generated se-
quences might have other uses as well. For instance, if it were of interest to determine
whether the distribution of a particular sequence motif (e.g., secondary structural el-
ement, enhancer signal, etc.) in a genomic sequence is intrinsically unusual or only
appears unusual due to its differing frequency of occurrence in coding vs non-coding
regions, then using the model to generate random sequences consistent with the given
gene locations might provide a much more realistic type of control than would other-
wise be available.

Other applications of the model framework may also be of interest. In particular,
consider deriving two (or more) sets of model parameters, M; and Mj, perhaps from
different organisms or different classes of genes. Then, given a sequence S, the prob-
abilities P{S|M;} and P{S|My} could be calculated, using the “forward” algorithm
(Section 2.7) and used to predict which organism or class of genes the sequence be-
longs to. This application might prove useful, for instance, in the detection of genes
which have been acquired by horizontal transfer from one genome to another, an issue
of obvious importance in studying the evolution of genomes and in estimating phy-
logenetic divergence times. Thus, this work can be considered either as another step
toward the goal of identifying all human genes (and all genes from a variety of model
organisms), or in the more general context of methods for classification, analysis and

comparison of genes and genomes.
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APPENDIX A

GENSCAN LEARNING SET

The sets of GenBank loci constructed as a standard for training and testing of gene

finding methods by D. Kulp (University of California at Santa Cruz) and M. G. Reese
(Lawrence Berkeley National Laboratories), August 22, 1995 [ftp://ftp.cse.ucsc.edu/pub/dna/genes]
were used as a starting point for construction of the GENSCAN learning set. These
sets were derived by screening GenBank (release 89, 1995) for all sequences meeting

the following criteria:
ORGANISM Homo sapiens
exactly one CDS feature (to avoid alternatively spliced genes)
first exon begins with ATG
last exon ends with stop codon: no other in-frame stop codons
all splice sites match minimal consensus (acceptor: AG, donor: GT)

Separate single- and multi-exon gene sets were derived and culled of redundant or
substantially similar (BLAST score > 100) entries using BLASTP (Altschul et al.,
1990) with default parameters. I further cleaned this set by removing genes whose

annotation indicated any of the following:
alternative splicing
partial or putative CDS location or ORF designation
result of non-productive rearrangement
viral or mitochondrial origin
submitted to GenBank by NCBI staff, not original sequencer of gene

suspiciously short, even intron lengths (suggesting incomplete sequencing of

introns)
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This procedure resulted in a penultimate set of 428 sequences. From this set were re-
moved all genes > 25% identical at the amino acid level to any gene from GeneParser
test sets 1 and II (Snyder & Stormo, 1995) using the PROSET program (Brendel,
1992) with default parameters. The final resulting set containing 380 genes is desig-
nated the GENSCAN learning set, £. The 238 multi-exon genes of the learning set
are listed below, followed by the 142 single-exon genes.
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GenBank Locus

HS14B7
HS1D3HLH
HS20XO0C
HSACKIL0
HSALADG
HSAPC3A
HSAPOA2
HSAPOAIA
HSAPOC2G
HSARYLA
HSASML
HSAT3
HSATPCP1
HSB3A
HSBCDIFFI
HSBGPG
HSBSF2
HSCI1INHIB
HSCBMYHC
HSCD14G
HSCD1R3
HSCD7
HSCKBG
HSCKIIBE
HSCOMT?2
HSCOSE
HSCPHT70
HSCSF1PO
HSCST3G
HSCTAS
HSCYCLA
HSCYP450
HSDAO
HSDNAMIA
HSENAGENO

TTOITOANT N 6

Accession

749258
X73428
X66114
X14487
X64467
X01392
X04898
X01038
X05151
X52150
X63600
X68793
X69907
X72861
X12706
X04143
Y00081
X54486
X52889
X06882
X14974
X06180
X15334
X57152
726491
X62891
X52851
X14720
X52255
718859
X68303
X02612
X78212
X84707
746254

XT = A4~
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Definition

Human DNA sequence from cosmid 14B7 in Xq28 containing
H .sapiens Id3 gene for HLH type transcription factor.
H.sapiens gene for 2-oxoglutarate carrier protein.

Human gene for acidic (type I) cytokeratin 10.

H .sapiens ALAD gene for porphobilinogen synthase.

Human apolipoprotein CIII gene and apo Al-apo CIII intergenic
Human gene for apolipoprotein All.

Human fetal gene for apolipoprotein Al precursor.

Human apoC-II gene for preproapolipoprotein C-II.

Human DNA for arylsulphatase A (EC 3.1.6.1).

H .sapiens genes for acid sphingomyelinase ASM.

H .sapiens gene for antithrombin III.

H.sapiens gene for mitochondrial ATP synthase ¢ subunit (P1 form).
H.sapiens gene for beta-3-adrenergic receptor.

H .sapiens gene for B cell differentiation factor I.

Human gene for bone gla protein (BGP).

Human (BSF-2/IL6) gene for B cell stimulatory factor-2.
Human gene for Cl-inhibitor.

Human gene for cardiac beta myosin heavy chain.

Human gene for CD14 differentiation antigen.

Human CD1 R3 gene for MHC-related antigen.

Human mRNA for CD7 antigen (gp40).

Human gene for creatine kinase B (EC 2.7.3.2).

Human gene for casein kinase II subunit beta (EC 2.7.1.37).

H .sapiens gene for catechol O-methyltransferase.

H .sapiens mutant coseg gene for vasopressin-neurophysin precursor.
Human cyclophilin gene for cyclophilin (EC 5.2.1.8).

Human c-fms proto-oncogene for CSF-1 receptor.

Human CST3 gene for cystatin C.

H .sapiens gene for cone transducin alpha subunit.

H .sapiens cycA gene for cyclin A.

Human gene for cytochrome P(1)-450.

H .sapiens diamine oxidase gene.

H .sapiens MIA gene.

H.sapiens gene for neutrophil-activating peptide 78 (ENA-T78).

T TIAT AN O ~ LY s N 1
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HSGTRH X15215 Human gene for gonadotropin-releasing hormone.
HSHCF1 X79198 H.sapiens HCF-1 gene.

HSHH3X3B 748950  H.sapiens hH3.3B gene for histone H3.3.
HSHLADMBG X76776 H.sapiens HLA-DMB gene.

HSHLADZA X02882 Human HLA class IT alpha chain gene DZ-alpha.

HSHLIA X00492 Human gene for histocompatibility antigen HLA-A3.

HSHOX3D X61755 Human HOX3D gene for homeoprotein HOX3D.

HSHSC70 Y00371 Human hsc70 gene for 71 kd heat shock cognate protein.
HSIFNAR X60459 Human IFNAR gene for interferon alpha/beta receptor.

HSIFNG V00536 Human immune interferon (IFN-gamma) gene.

HSIGK12 700010 H.sapiens germ line pseudogene for immunoglobulin kappa light chain
HSILO05 X00695 Human interleukin-2 (IL-2) gene and 5’-flanking region.
HSILIAG X03833 Human gene for interleukin 1 alpha (IL-1 alpha).

HSIL1B X04500 Human gene for prointerleukin 1 beta.

HSILIRECA X64532 H.sapiens gene for interleukin-1 receptor antagonist.

HSINSU V00565 Human gene for preproinsulin, from chromosome 11. Includes a highly
HSINT1G X03072 Human int-1 mammary oncogene.

HSINT?2 X14445 Human int-2 proto-oncogene.

HSL7A X52138 Human L7a gene for large ribosomal subunit component (L7a).
HSLCATG X04981 H.sapiens gene for lecithin-cholesterol acyltransferase (LCAT).
HSMECDAG X62654 H.sapiens gene for Me491/CD63 antigen.

HSMED Y00477 Human bone marrow serine protease gene (medullasin) (leukocyte
HSMGSAG X54489 Human gene for melanoma growth stimulatory activity (MGSA).
HSMHCPU15 714977  H.sapiens gene for major histocompatibility complex encoded
HSMOGG 748051 H.sapiens gene for myelin oligodendrocyte glycoprotein (MOG).
HSMTS1G 733457  H.sapiens mtsl gene.

HSNCAMX1 729373  H.sapiens gene for neural cell adhesion molecule L1.

HSNFM Y00067 Human gene for neurofilament subunit M (NF-M).

HSODCG X16277 Human gene for ornithine decarboxylase ODC (EC 4.1.1.17).
HSODF2 X74614 H.sapiens ODF2 (allele 2) gene for outer dense fiber protein.
HSP53G X54156 Human p53 gene for transformation related protein p53 (also called
HSPAT133 X69438 H.sapiens zinc finger gene pAT133.

HSPR264SC X75755 H.sapiens PR264 gene.

HSPRB3L X07881 Human gene PRB3L for proline-rich protein G1.

HSPROPG X70872 H.sapiens gene for properdin.

HSRODPDE X62025 H.sapiens rod ¢cG-PDE G gene for 3’, 5’-cyclic nucleotide
HSRPII145 723102 H.sapiens gene for RNA polymerase II 14.5 kDa subunit.

TTOIT Tl A XT AFTO N M T . B ~ 1 1 L. NN
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HSU08198 U08198 Human complement C8 gamma subunit precursor (C8G) gene, complete
HSU09954 U09954 Human ribosomal protein L9 gene, 5’ region and complete cds.
HSU12421 U12421 Human mitochondrial benzodiazepine receptor (MBR) gene, complete
HSU17969 U17969 Human initiation factor elF-5A gene, complete cds.

HSU19765 U19765 Human nucleic acid binding protein gene, complete cds.

HSU19816 U19816  Human thyroid transcription factor-1 (TTF-1) gene, complete cds.
HSU20325 U20325 Human cocaine and amphetamine regulated transcript CART (hCART)
HSU20499 U20499 Human thermolabile phenol sulfotransferase (stm) gene, complete
HSU20982 U20982 Human insulin-like growth factor binding protein-4 (IGFBP4) gene,
HSU23143 U23143 Human mitochondrial serine hydroxymethyltransferase gene, nuclear
HSU23853 U23853 Human dual-specific phosphoprotein phosphatase (PAC1) gene,
HSU25826 U25826 Human transcription factor (SC1) gene, complete cds.

HSU26425 U26425 Human phospholipase C-beta-3 (PLCB3) gene, complete cds.
HSUBA52G X56997  Human UbA52 gene coding for ubiquitin-52 amino acid fusion protein.
HSUBR X76498 H.sapiens gene for uterine bombesin receptor.

HSZNGP1 X69953 H.sapiens gene for ZN-alpha-2-glycoprotein.

HUMG6PTS D25234 Human gene for 6-pyruvoyl-tetrahydropterin synthase.

HUMAIATP K02212 Human alpha-1-antitrypsin gene (S variant), complete cds.
HUMAIGLY?2 M21540 Human alpha-1-acid glycoprotein 2 (AGP2) gene, complete cds.
HUMACCYBB M10277 Human cytoplasmic beta-actin gene, complete cds.

HUMADAG M13792 Human adenosine deaminase gene, complete cds.

HUMADPRF02 M74493 Human ADP-ribosylation factor 3 gene, exons 2-5.

HUMAFP M16110 Human alpha-fetoprotein gene, complete cds.

HUMAHCY M61831 Human S-adenosylhomocysteine hydrolase (AHCY) mRNA, complete cds.
HUMAKI1 J04809  Human cytosolic adenylate kinase (AK1) gene, complete cds.

HUMALIFA M63420 Human leukemia inhibitory factor (LIF) gene, complete cds.

HUMANFA K02043 Human atrial natriuretic factor (PND) gene, complete cds.

HUMANTI1 J04982  Human heart/skeletal muscle ATP/ADP translocator (ANT1) gene,

HUMAPOA4C  M14642 Human apolipoprotein A4 (APOA4) gene, exons 1, 2 and 3.
HUMAPOCIA  M20902 Human apolipoprotein C-I (VLDL) gene, complete cds.

HUMAPOE4 M10065 Human apolipoprotein E (epsilon-4 allele) gene, complete cds.
HUMATP1A2 J05096  Human Na,K-ATPase subunit alpha 2 (ATP1A2) gene, complete cds.
HUMATPSAS D28126 Human gene for ATP synthase alpha subunit.

HUMATPSYB  M27132 Human ATP synthase beta subunit (ATPSB) gene, complete cds.
HUMBFXIII M64554 Human factor XIII b subunit gene, complete cds.

HUMBHSD M38180 Human 3-beta-hydroxysteroid dehydrogenase/delta-5-delta-4-isomerase

HUMBLYM1 K01884 Human Blym-1 transforming gene, complete coding region.
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HUMDS
HUMEDHBI17
HUMEDNI1B
HUMEF1A
HUMELAFIN
HUMEPOHYDD
HUMFABP
HUMFIXG
HUMGOS8PP
HUMGAD45A
HUMGARE
HUMGAST?2
HUMGCAPB
HUMGCBI
HUMGCK
HUMGLUT4B
HUMHCF2
HUMHIS102
HUMHMG14A
HUMHMG2A
HUMHMGIY
HUMHPRTB
HUMHSKPQZ7
HUMHSP27X
HUMHSPS89KD
HUMIDS
HUMIFNRF1A
HUMIGERA
HUMIL2RGA
HUMIL4A
HUMIL9RA
HUMIMPDH
HUMIRBPG
HUMLHDC
HUMLYLI1B
HUMLYTOXBB
HUMMCHEMP

TTTTRARATTIAANTNO A

D26535
M27138
J05008
J04617
D13156
L29766
M18079
K02402
L13391
L24498
L10822
K01254
L36861
J03059
M93280
M91463
M58600
L04132
M21339
M83665
L17131
M26434
M81806
L39370
M27024
L35485
L05072
L14075
L19546
M23442
L39064
L33842
J05253
D16583
M22638
L11016
M37719

RACNA A1
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Human gene for dihydrolipoamide succinyltransferase, complete cds
Human estradiol 17 beta-dehydrogenase gene, complete cds.

Homo sapiens endothelin-1 (EDN1) gene, complete cds.

Human elongation factor EF-1-alpha gene, complete cds.

Human gene for elafin, complete cds.

Homo sapiens epoxide hydrolase (EPHX) gene, complete cds.

Human, intestinal fatty acid binding protein gene, complete cds,
Human factor IX gene, complete cds.

Human helix-loop-helix basic phosphoprotein (G0S8) gene, complete
Human gadd4b gene, complete cds.

Human gastrin receptor gene, complete cds.

Human gastrin gene, complete cds.

Homo sapiens guanylate cyclase activating protein (GCAP) gene exons
Human glucocerebrosidase (GCB) gene, complete cds.

Human glucokinase (GCK) gene, exons la-10.

Human glucose transporter (GLUT4) gene, complete cds.

Human heparin cofactor IT (HCF2) gene, exons 1 through 5.

Human histatin 1 (HIS1) gene exons 1-5, complete cds.

Human non-histone chromosomal protein HMG-14 gene, complete cds.
Human high mobility group 2 protein (HMG-2) gene, complete cds.
Human high mobility group protein (HMG-I(Y)) gene exons 1-8,
Human hypoxanthine phosphoribosyltransferase (HPRT') gene, complete
Human housekeeping (Q1Z 7F5) gene, exons 2 through 7, complete cds.
Human heat shock protein 27 (HSPB1) gene exons 1-3, complete cds.
Homo sapiens heat shock protein (HSP89-alpha) gene, complete cds.
Homo sapiens iduronate sulphate sulphatase (IDS) gene, complete
Homo sapiens interferon regulatory factor 1 gene, complete cds.

Homo sapiens immunoglobulin receptor alpha chain gene, complete
Human (IL2RG) gene, complete cds with repeats.

Human interleukin 4 (IL-4) gene, complete cds.

Homo sapiens interleukin 9 receptor (IL9R) gene, complete cds.

Homo sapiens (clone FFE-7) type II inosine monophosphate

Human interstitial retinol-binding protein (IRBP) gene, complete
Human gene for L-histidine decarboxylase, complete cds.

Human LYL-1 protein gene, complete cds.

Homo sapiens lymphotoxin-beta gene, complete cds.

Human monocyte chemotactic protein gene, complete cds.
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HUMPBIPB D49493 Human gene for human prepro bone inducing protein.

HUMPCNA J04718  Human proliferating cell nuclear antigen (PCNA) gene, complete cds.
HUMPDHAL D90084 Human pyruvate dehydrogenase (EC 1.2.4.1) alpha subunit gene, exons
HUMPEPYYA L25648 Human peptide YY gene, complete cds.

HUMPGAMMG J05073  Human phosphoglycerate mutase (PGAM-M) gene, complete cds.
HUMPHOSA L12760  Human phosphoenolpyruvate carboxykinase (PCK1) gene, complete cds
HUMPIMIA M27903 Human pim-1 proto-oncogene gene, complete cds.

HUMPKDIGEN L39891 Homo sapiens polycystic kidney disease-associated protein (PKD1)

HUMPPPA M11726 Human pancreatic polypeptide gene, complete cds.

HUMPRF1A M31951 Human perforin (PRF1) gene, complete cds.

HUMPSAP M30838 Human pulmonary surfactant apoprotein (PSAP) gene, complete cds.
HUMPTH2 J00301  Human parathyroid (pth) gene: coding region and 3’flank.

HUMRBPA L34219 Homo sapiens retinaldehyde-binding protein (CRALBP) gene, complete
HUMRCC1 D00591  Human RCC1 gene, complete cds.

HUMRETBLAS L11910 Human retinoblastoma susceptibility gene exons 1-27, complete cds.
HUMRIGA M32405 Human homologue of rat insulinoma gene (rig), exons 1-4.
HUMRIGBCHA  M89796 Human high affinity IgE receptor beta chain gene, complete cds.
HUMRODI1X M96759 Human rod outer segment membrane protein 1 (ROM1) gene exons 1-3,
HUMRPSI17A M18000 Human ribosomal protein S17 gene, complete cds.

HUMSEMI M81650 Human semenogelin I (SEMGI) gene, complete cds.
HUMSOMI J00306  Human somatostatin I gene and flanks.
HUMSPBAA M24461 Human pulmonary surfactant-associated protein SP-B (SFTP3) mRNA,

HUMSPERSYN M64231 Human spermidine synthase gene, complete cds.
HUMSTATH2 M32639 Human salivary statherin gene, exons 2-6.

HUMTA D32046  Human gene for thrombopoietin.

HUMTBGA L13470  Human thyroxine-binding globulin gene, complete cds.

HUMTDGF1A M96955 Human (clone CR) teratocarcinoma-derived growth factor 1 (TDGF1)
HUMTFPB J02846  Human tissue factor gene, complete cds.

HUMTHY1A M11749 Human Thy-1 glycoprotein gene, complete cds.

HUMTNP1 M59924 Human transition protein 1 gene, complete cds.

HUMTPA K03021 Human tissue plasminogen activator (t-PA) gene, complete cds.
HUMTPALBU L14927 Human tear prealbumin (TP) gene, complete cds and promoter region.
HUMTROC M37984 Human slow twitch skeletal muscle/cardiac muscle troponin C gene,
HUMTS1 D00596  Human thymidylate syntase (EC 2.1.1.45) gene, complete cds.
HUMTSHB2 M21024 Human thyrotropin beta (TSH-beta) subunit gene, exons 2 and 3.
HUMUBILP J03589  Human ubiquitin-like protein (GdX) gene, complete cds.

HUMVCAMI1A M73255 Human vascular cell adhesion molecule-1 (VCAM1) gene, complete CDS.
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Single-exon genes. Format: LOCUS (ACCESSION).
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HSOMGP (X57436)
HSACTHR (X65633)
HSANTENII (Z11162)
HSBNGF (V01511)
HSCENPB (X55039)
HSCNTFG (X60542)
HSD1DO (X55760)
HSEAR2 (X12794)
HSGDF5 (X80915)
HSHI11 (X57130)
HSHAIL8G (X65858)
HSHGMPO7J (X64995)
HSHISH2A (X00089)
HSKERUHS (X55293)
HSOTF3CG (Z11901)
HSPCRF (V00571)
HSPRP2 (X83416)
HSRNAPI4K (727113)
HSSOX3 (X71135)
HSTRELFA (X73534)
HSU03486 (U03486)
HSU10273 (U10273
HSU11424 (U11424
HSU16812 (U16812

)
)
)
HSU20734 (U20734)

HUM25RNASE (L10381)

HUMAGG (M11567)
HUMATCT4A (M35160)
HUMBTFD (M90356)
HUMCMOS (J00119)
HUMCSYNA (M14333)
HUMEPCIX (M90439)
HUMFPRIA (L10820)
HUMGAT33A (J04152)
HUMGPIBAA (M22403)
HUMHIT (M60094)
HUMHLGS (D29685)
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HS1433PR (X80536)
HSACTREC (X63128)
HSBAR (Y00106)
HSBPIP (X68790)
HSCICIMCC (Z25587)
HSCOLAIX (X60382)
HSDNAJ (X62421)
HSECP1 (X16545)
HSGLUDPI1 (X66310)
HSH2B1 (X57127)
HSHB2A (X63337)
HSHIS10G (X03473)
HSHM3 (X15265)
HSNFIL6 (X52560)
HSP3 (X12458)
HSPGK2G (X05246)
HSPRPE2 (X53065)
HSSECONC (X52259)
HSSPHAR (X82554)
HSTYRPH (X82676)
HSU03735 (U03735)
HSU10360 (U10360)
HSU13666 (U13666)
HSU17894 (U17894)
HSU21051 (U21051)
HUMA2CIIA (D13538)

HUMANONYMO (L18972)

HUMBILYM (M27394)

HUMCALCHAA (M92269)

HUMCNGCCA (L15296)
HUMENIGMA (L35240)
HUMEVI22 (M55267)
HUMFSRSA (D16826)

HUMGLUDECA (M86522)

HUMGPIX (M80478)
HUMHEN2A (M97508)
HUMIL2AB (M22005)

TT T TRATSZAATTIANT /A RAOIOOA ™\

HSAACT (X14672)
HSADSS (X66503)
HSBFCRII (X52473)
HSCAR27 (X65784)
HSCKIIAL (X70251)
HSCREBA (X55545)
HSDRK1 (X68302)
HSFKBPA (X55741)
HSGPV (Z23091)
HSH4AHIS (X60481)
HSHGMO71 (X64994)
HSHISH1 (X76786)
HSIFD2 (V00532)
HSNTFR (X60201)
HSPCCBA (X73424)
HSPLMERE (X13556)
HSRIB1 (X79235)
HSSIAL (X52075)
HSTREB5A (X55543)
HSU01212 (U01212)
HSU10116 (U10116
HSU10554 (U10554
HSU13695 (U13695
HSU18548 (U18548
HSU22346 (U22346)
HUMABRA (L19704)
HUMASPA (L37019)
HUMBTFC (M90355)
HUMCDR34 (M31423)
HUMCSPC (M28170)
HUMEP2AA (M60119)
HUMEVI2B3P (M60830)
HUMGO0S2A (M69199)
HUMGPA (M16514)
HUMGPR5A (L36149)
HUMHISH2R (M64799)
HUMISK (M26685)
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APPENDIX B

GENSCAN TEST SET

The sets of GenBank loci constructed by D. Kulp (University of California at Santa Cruz)
and M. G. Reese (Lawrence Berkeley National Laboratories), were updated in the summer of 1996
[http://www-hgc.lbl.gov/inf/genesets.html] using sequences from GenBank release 95. The criteria
for inclusion were similar to those used for the original set (see Appendix A), except that only
multi-exon genes were included. This set was subsequently cleaned by removing all genes > 25%
identical at the protein level to any gene of the previous set using the PROSET program (Brendel,
1992) with default parameters. This resulted in a set of 65 genes termed the GENSCAN test set,
T, listed below.



APPENDIX B 129

GenBank Locus Accession Definition

D13752 D13752 Human CYP11B2 gene for steroid 18-hydroxylase, complete cds.
D83195 D83195 Human DNA for Deoxyribonuclease I precursor.
HSALDOA X12447 Human aldolase A gene (EC 4.1.2.13).

HSCYTOK20 X73501 H .sapiens gene for cytokeratin 20.

HSDNAAMHI X89013 H .sapiens gene for anti-mullerian hormone type II receptor.
HSHCC1GEN 749269 H.sapiens gene for chemokine HCC-1.

HSMB1GENE X95586 H.sapiens MB1 gene.

HSNFLG X05608 Human gene for neurofilament subunit NF-L.

HSPACAP X60435 H .sapiens gene PACAP for pituitary adenylate cyclase activating
HSQCS8B6 768193 Human DNA sequence from cosmid QC8B6, on chromosome Xq28,
HSRA36 769720 Human DNA sequence from cosmid RA36 from a contig from the tip of
HSRPS3AGE X87373 H.sapiens RPS3a gene.

HSU07807 u07807 Human metallothionein IV (MTIV) gene, complete cds.

HSU10307 U10307 Human interleukin 13 (IL13) gene, complete cds.

HSU16720 U16720 Human interleukin 10 (IL10) gene, complete cds.

HSU19906 U19906 Human arginine vasopressin receptor 1 (AVPR1) gene, complete cds.
HSU22027 U22027 Human cytochrome P450 (CYP2A6V2) gene, complete cds.
HSU24685 U24685 Human anti-B cell autoantibody IgM heavy chain variable V-D-J
HSU30787 U30787 Human uroporphyrinogen decarboxylase (URO-D) gene, complete cds.
HSU31767 U31767 Human neuronatin gene, complete cds.

HSU31929 U31929 Human orphan nuclear receptor (DAX1) gene, complete cds.
HSU32323 U32323 Human interleukin-11 receptor alpha chain gene, complete cds.
HSU32576 U32576 Human apolipoprotein apoC-IV (APOC4) gene, complete cds.
HSU33446 U33446 Human prostasin gene, complete cds.

HSU37022 U37022 Human cyclin-dependent kinase 4 (CDK4) gene, complete cds.
HSU43415 U43415 Human obese (ob) gene, complete cds.

HSU43572 U43572 Human alpha-N-acetylglucosaminidase (NAGLU) gene, complete cds.
HSU43901 U43901 Human 37 kD laminin receptor precursor/p40 ribosome associated
HSU46692 U46692 Human cystatin B gene, complete cds.

HSU46920 U46920 Human metaxin (MTX) gene, complete cds.

HSU48795 U48795 Human antimicrobial protein CAP18 precursor gene, complete cds.

HSU48869 U48869 Human cdk-inhibitor p57/KIP2 (CDKNI1C) gene, complete cds.
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HSU50136 U50136 Human leukotriene C4 synthase (LTC4S) gene, complete cds.
HSU50871 U50871 Human familial Alzheimer’s disease (STM2) gene, complete cds.
HSU51899 U51899 Human kappa-casein gene, complete cds.

HSUNGGENE X89398 H.sapiens ung gene for uracil DNA-glycosylase.

HUMAZCDI M96326 Human azurocidin gene, complete cds.

HUMBETGLOA L26462 Human haplotype C4 beta-globin gene, complete cds.
HUMCACY J02763  Human calcyclin gene, complete cds.

HUMCHYMASE M64269 Human mast cell chymase gene, complete cds.
HUMCOL2A1Z L10347 Human pro-alphal type II collagen (COL2A1) gene exons 1-54,

HUMCOX5B M59250 Homo sapiens cytochrome ¢ oxidase subunit Vb (COX5B) gene, complete
HUMCYP2DG M33189 Human debrisoquine 4-hydroxylase mutant allele (CYP2D6-MA1) gene,
HUMCYPIIE J02843  Human cytochrome P450ITE] (ethanol-inducible) gene, complete cds.
HUMDKERB M34482 Human cytokeratin 8 (CK8) gene, complete cds.

HUMDNLIL L40817 Homo sapiens muscle-specific DNase I-like (DNL1L) gene, exons 1-9,
HUMDODDA L39874  Homo sapiens deoxycytidylate deaminase gene, complete cds.
HUMGOS19A M23178 Human homologue-1 of gene encoding alpha subunit of murine cytokine
HUMGALT54X L48714 Homo sapiens galactose-1-phosphate uridyl transferase (GALT) mutant
HUMHA2WC D31846 Human gene for aquaporin-2 water channel.

HUMHOX4A D11117 Human homeobox HOX 4A gene for homeodomain protein, complete cds.
HUMHPD D31628 Human gene for 4-hydroxyphenylpyruvic acid dioxygenase (HPD),
HUMIBP3 M35878 Human insulin-like growth factor-binding protein-3 gene, complete
HUMKALLIST L28101 Homo sapiens kallistatin (PI4) gene, exons 1-4, complete cds.
HUMMKXX M94250 Human retinoic acid inducible factor (MK) gene exons 1-5, complete
HUMNUCLEO M60858 Human nucleolin gene, complete cds.

HUMP45C17 M19489 Human P450XVIIA-1 (steroid 17-alpha-hydroxylase/17,20 lyase) gene,
HUMPCBD L41560 Homo sapiens (clones HGPCD2 and HGPCD15) pterin-4a-carbinolamine
HUMPCI M68516 Human protein C inhibitor gene, complete cds.

HUMPF4V1A M26167 Human platelet factor 4 varation 1 (PF4varl) gene, complete cds.
HUMPRCA M11228 Human protein C gene, complete cds.

HUMREGB J05412  Human regenerating protein (reg) gene, complete cds.

HUMSAPO1 D00097 Human serum amyloid P component (SAP) gene with upstream promoter.
HUMSFRS L41887 Homo sapiens splicing factor, arginine/serine-rich 7 (SFRS7) gene,

HUMTNP2SS L03378 Homo sapiens transition protein 2 (TNP2) gene, complete cds.
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Test set of 202 Drosophila melanogaster genomic sequences.

This set of 202 GenBank loci [ftp://www-hgc.lbl.gov/pub/genesets/dro] was constructed by D. Kulp
(U. C. Santa Cruz) and M. G. Reese (Lawrence Berkeley National Laboratories) on 12 Dec. 1996 as
a standard for training and testing of gene finding programs. Criteria used in construction of this

set were similar to those used for human genes (Appendices A and B).

Format: LOCUS (ACESSION).
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DMADH (X78384)
DMATTACIN (746893)
DMBJIG (X58530)
DMBX200 (X13168)
DMCOPIAV (X54147)
DMCYSTA (X55178)
DMDNAMIN (X91853)
DMDTFIIAS (X83271)
DMELGG (X68259)
DMGIANT (X61148)
DMHAIRG (X15904)
DMKA12ADH (X60791)
DML2AMD (X04695)
DMLETHAL?2 (Z48443)
DMMP20 (Y00795)
DMP11 (X59691)
DMPGKG (%14029)
DMPS35 (X62285)
DMRAFPO (X07181)
DMRNPOL2 (X05709)
DMRPL19 (X74776)
DMSAL (X57474)
DMSSRP2GN (X89811)
DMSWAL (X56023)
DMTORSO (X15150)
DMTRFG (X70838)
DMU03276 (U03276)
DMU04822 (U04822)
DMU11718 (U11718)
DMU19731 (U19731)
DMU20543 (U20543)
DMU24676 (U24676)
DMU33747 (U33747)
DMU35816 (U35816)
DMU43588 (U43588)

o~ o~ o~ o~~~ =~ o~

DMANPG (X56726)
DMAURG (X83466)
DMBSG25D (X04896)
DMCALRET (X64461)
DMCSDUC (X77936)
DMCZSUDMA (719591)
DMDNARPLY (X94613)
DMEF1AF2 (X06870)
DMFBP1 (X69965)
DMGTPBP (X71866)
DMHGSG?2 (X07311)
DMKNIRPS (X13331)
DMLAMIN (X16275)
DMMBNGEN (7%47722)
DMMTNG (X03758)
DMPCGENE (X55702)
DMPPGENE (X69828)
DMPUFFSP (X64536)
DMRLBIA (X73216)
DMRP128 (X58826)
DMRPL7A (X82782)
DMSGS5 (X04269)
DMSTELL (X15899)
DMTFIIB (U02879)
DMTPIG (X57576)
DMTSLG (Z30342)
DMU03986 (U03986)
DMU06861 (U06861)
DMU15928 (U15928)
DMU19742 (U19742)
DMU20566 (U20566)
DMU27181 (U27181)
DMU34039 (U34039)
DMU38951 (U38951)
DMU43737 (U43737)

o~ o~ o~ o~~~ o~ o~
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DMANX (X78323)
DMBCDG (X07870)
DMBTDGN (729361)
DMCHORS16 (X16715)
DMCYP4D2 (X75955)
DMDEADBXA (Z23266)
DMDRCIV2 (X16968)
DMEHAB (X72303)
DMFUSED (X80468)
DMH2AVDG (X15549)
DMK10G (X12836)
DMKR (X03414)
DMLAMINC (X75886)
DMMGN (U03559)
DMMTOG (X52098)
DMPER (X03636)
DMPRUNEG (7%12141)
DMR118C (X16962)
DMRLCIB (X73218)
DMRP49 (X00848)
DMRPS3 (X72921)
DMSPXGENE (X97197)
DMSUHW (Y00228)
DMTOPII (X61209)
DMTRA2W (X57484)
DMTU36B (X15008
DMU04239 (U04239
DMU07799 (U07799
DMU18401 (U18401
DMU20542 (U20542
DMU21552 (U21552
DMU28044 (U28044
DMU35631 (U35631
DMU39739 (U39739
(

)
)
)
)
)
)
)
)
)
DMU43786 (U43786)
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DMU46009 (U46009)
DMU51046 (U51046)
DMU52952 (U52952)
DMW13 (X66270)
DMYELLOW (X04427)
DMYP3G (X04754)
DROAFLL (M61127)
DROARF2A (L25062)

DROBROWNPR (L05635)

DROCOLA4G (M96575)
DRODEADA (M74824)
DRODHORO (L00964)

DRODROSOPH (M23391)

DROEDGT78A (M71247)

DROESCOMBS (L41867)

DROFASI (M32311)
DROGLTFAC (L17340)
DROLAMAA (M96388)
DROMEX1A (M63626)
DROMYLA (M11947)
DRONOD (M94188)
DROOSKAR (M65178)
DROPCNA (M33950)
DROPGD (M80598)

DROPOLYABA (L13037)

DRORBPI1A (L04929)
DRORPRIIA (M27431)
DROSNF (L29521)
DROSUSG (M57889)
DROTUBA4 (M14646)
DROXPACDR (D31892)
SMCECCG (Z11167)
U00790 (U00790)

DMU51043 (U51043)
DMU51047 (U51047)
DMU56393 (U56393)
DMWHITE (X02974)
DMYEMA (X63503)
DMZESTE (Y00049)
DROAPRTZ (L06280)
DROARF3B (L25064)
DROBSHHB (L06475)
DRODAPR (L23764)
DRODFUR2X (L33831)
DRODMRBA (D37788)
DRODSORI1 (D13782)
DROEDG84A (M71249)
DROEST6A (J04167)
DROGAS02 (M23094)
DROHP1 (M57574)
DROLAMB2A (M58417)
DROMNSO (L34276)
DRONANOS (M72421)
DROOPSA (K02315)
DROOTUA (M30825)
DROPCXGEN (M74329)
DROPGLY (L27654)
DROPPP (M32141)
DRORNAHEL (L06018)
DRORPS17 (M22142)

DROSO7LESA (M77501)

DROTRP (M34394)
DROVERM (M34147)
57693 (S57693)
U00145 (U00145)

DMU51045 (U51045)
DMU51053 (U51053)
DMUROX (X51940)
DMXDH (Y00308)
DMYOLK (V00248)
DROACT79B (M18829)
DROARF (L14923)
DROARRA (M30140)
DROCDPR (L32839)
DRODCDRK (D16402)
DRODGQ (M58016)
DRODOXA2 (M63010)

DROECDINME (M97259)

DROEDG91A (M71250)
DROEVE (M14767)

DROGLDGMC (M29298)

DROIMPDEH (L14847)
DROMDR50A (L07065)
DROMSP316 (M32022)
DRONINAA (M22851)
DROOPSAA (M12896)
DROP40A (M90422)
DROPFK (L27653)
DROPOLA (D90310)
DROPRD (M14548)
DROROUGH (M23629)
DROSEV (J03158)
DROSSL (L49382)
DROTUBA1 (M14643)
DROVITB (M18281)
S66801 (S66801)
U00683 (U00683)
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Test set of 41 nonredundant maize GenBank sequences constructed by V. Brendel.

Format: LOCUS (ACCESSION)

MZEACTI1G (J01238)
MZECPN60A (L21007)
MZETNENSPM (M25427)
MZEWISHR2 (M81603)
ZMADHIFA (X04050)
ZMANTG1 (X15711)
ZMBZMCC (X07940)
ZMCPT71CIG (X81828)
ZMGPA1 (X15408)
ZMLACDEHG (Z11754)
ZMPEP (X15642)
ZMRBCS (Y00322)
ZMU09989 (U09989)
ZMWAXY (X03935)

MZECAT3GN (L05934)
MZEMYBAA (M37153)
MZETRNMU (M76978)
MZKNIGENE (X00000)
ZMALDOAR (X12872)
ZMAUX311 (X56737)
ZMC2CS (X60205)
ZMFNRBP (726824)
ZMGPC1 (X15596)
ZMOPA?2 (X15544)
ZMR28DNA (X59138)
ZMSUCS2 (X02382)
ZMU14599 (U14599)
ZMZMCIIGE (X87126)

MZECDPKX (L27484)
MZEOMTH (M73235)
MZETRNMU (M76978)
ZMAILG (X05068)
ZMALPTUB (X15704)
ZMBITUB (X52878)
ZMCATA1 (X60135)
ZMGLBILG (X59083)
ZMGRP (X12564)
ZMPDCMRNA (X59546)
ZMRABI7G (X15994)
ZMTRPA (X76713)
ZMU20450 (U20450)
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